Knowledge of the vapor–liquid equilibrium (VLE) properties of molten salts is important in the design of thermal energy storage systems for solar power and nuclear energy production applications. The high temperatures involved make their experimental determination problematic, and the development of both macroscopic thermodynamic correlations and predictive molecular-based methodologies are complicated by the requirement to appropriately incorporate the chemically reacting vapor-phase species. We derive a general thermodynamic-based atomistic simulation framework for molten salt VLE prediction and show its application to NaCl. Its input quantities are temperature-dependent ideal-gas free energy data for the vapor phase reactions and density and residual chemical potential data for the liquid. If these are not available experimentally, the former may be predicted using standard electronic structure software, and the latter may be predicted by means of classical atomistic simulation methodology. The framework predicts the temperature dependence of vapor pressure, coexisting phase densities, vapor phase composition, and vaporization enthalpy. It also predicts the concentrations of vapor phase species present in minor amounts (such as the free ions), quantities that are extremely difficult to measure experimentally. We furthermore use the results to obtain an approximation to the complete VLE binodal dome and the critical properties. We verify the framework for molten NaCl, for which experimentally based density and chemical potential data are available in the literature. We then apply it to the analysis of NaCl simulation data for two commonly used atomistic force fields. The framework can be readily extended to molten salt mixtures and to ionic liquids.

2.
O.
Benes
and
R. J. M.
Konings
,
J. Fluorine Chem.
130
,
22
(
2009
).
3.
S.
Ladkany
,
W.
Culbreth
, and
N.
Loyd
,
J. Energy Power Eng.
12
,
507
(
2018
).
4.
Q.-J.
Li
,
E.
Küçükbenli
,
S.
Lam
,
B.
Khaykovich
,
E.
Kaxiras
, and
J.
Li
,
Cell Rep. Phys. Sci.
2
,
100359
(
2021
).
5.
X.
Wang
,
J. D.
Rincon
,
P.
Li
,
Y.
Zhao
, and
J.
Vidal
,
J. Sol. Energy Eng.
143
,
041005
(
2021
).
6.
Y.
Zhao
, Gen3 CSP Summit, Golden Co., 25–26 Aug. 2021, NREL/TP-5500-78047 (NREL/TP-5500-78047).
7.
A.
Caraballo
,
S.
Galan-Casado
,
A.
Caballero
, and
S.
Serena
,
Energies
14
,
1197
(
2021
).
8.
G.
Janz
,
C.
Allen
,
N.
Bansal
,
R.
Murphy
, and
R.
Tomkins
, NSRDS-NBS 61, Part II,
1979
.
9.
H.
Wang
,
R. S.
DeFever
,
Y.
Zhang
,
F.
Wu
,
S.
Roy
,
V. S.
Bryantsev
,
C. J.
Margulis
, and
E. J.
Maginn
,
J. Chem. Phys.
153
,
214502
(
2020
).
10.
S.
Sharma
,
A. S.
Ivanov
, and
C. J.
Margulis
,
J. Phys. Chem. B
125
,
6359
(
2021
).
11.
A. Z.
Panagiotopoulos
,
Fluid Phase Equilib.
76
,
97
(
1992
).
12.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
13.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
,
Mol. Phys.
63
,
527
(
1988
).
14.
Y.
Guissani
and
B.
Guillot
,
J. Chem. Phys.
101
,
490
(
1994
).
15.
F.
Funi
and
M.
Tosi
,
J. Phys. Chem. Solids
25
,
31
(
1964
).
16.
M. P.
Tosi
and
F. G.
Fumi
,
J. Phys. Chem. Solids
25
,
45
(
1964
).
17.
J. W. E.
Lewis
and
K.
Singer
,
J. Chem. Soc. Faraday Trans. 2
71
,
41
(
1975
).
18.
P. C. R.
Rodrigues
and
F. M. S.
Silva Fernandes
,
J. Chem. Phys.
126
,
024503
(
2007
).
19.
M. C.
Abramo
,
D.
Costa
,
G.
Malescio
,
G.
Munao
,
G.
Pellicane
,
S.
Prestipino
, and
C.
Caccamo
,
Phys. Rev. E
98
,
010103
(
2018
).
20.
D.
Kussainova
,
A.
Mondal
,
J. M.
Young
,
S.
Yue
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
153
,
024501
(
2020
).
21.
I. S.
Joung
and
T. E.
Cheatham
,
Am. Chem. Soc.
112
(
30
),
9021
(
2008
).
22.
A. L.
Benavides
,
M. A.
Portillo
,
V. C.
Chamorro
,
J. R.
Espinosa
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
147
,
104501
(
2017
).
23.
J. L.
Barton
and
E.
Bloom
,
J. Phys. Chem.
60
,
1413
1416
(
1956
).
24.
R. C.
Miller
and
P.
Kusch
,
J. Chem. Phys.
25
,
860
(
1956
).
25.
S.
Datz
,
W. T.
Smith
, and
E. H.
Taylor
,
J. Chem. Phys.
34
,
558
(
1961
).
26.
27.
H.
Kvande
,
H.
Linga
,
K.
Motzfeldt
, and
P. G.
Wahlbeck
,
Acta Chem. Scand. A
33
,
281
(
1979
).
28.
K. S.
Pitzer
,
J. Chem. Phys.
104
(
17
),
6724
(
1996
).
29.
M. W. J.
Chase
,
Journal of Physical and Chemical Reference Data, Monograph
(Am. Chem. Soc. and AIP,
1988
), No. 9, Parts I and II.
30.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Naka
,
T.
Vreven
,
K.
Throssell
,
J. J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
31.
A. D.
Kirshenbaum
,
J. A.
Cahill
,
P. J.
McGonigal
, and
A. V.
Grosse
,
J. Inorg. Nucl. Chem.
24
,
1287
(
1962
).
32.
Y.
Marcus
,
J. Chem. Thermodyn.
61
,
7
(
2013
).
33.
W.
Smith
and
R.
Missen
,
Chemical Reaction Equilibrium Analysis: Theory and Algorithms
(
Krieger Publishing Co.; Wiley-Interscience
,
Malabar, FL
,
1982; 1991
), Reprint of same title.
34.
A. M. M.
Leal
,
D. A.
Kulik
,
W. R.
Smith
, and
M. O.
Saar
,
Pure Appl. Chem.
89
,
597
643
(
2017
).
35.
S.
Horiba
and
H.
Baba
,
Bull. Chem. Soc. Jpn.
3
,
11
(
1928
).
36.
E. F.
Fiock
and
W. H.
Rodebush
,
J. Am. Chem. Soc.
48
,
2522
(
1926
).
37.
D. R.
Stull
,
Ind. Eng. Chem.
39
,
517
(
1947
).
38.
H. V.
Wartenberg
and
P.
Albrecht
,
Z. Elektrochem.
27
,
162
(
1921
).
39.
O.
Ruff
and
S.
Mugdan
,
Z. Anorg. Allg. Chem.
117
,
147
(
1921
).
41.
K.
Kelley
,
US Bur. Mines Bull.
383
,
601
, Part III (
1962
).
42.
A. V.
Grosse
,
J. Inorg. Nucl. Chem.
22
,
23
(
1961
).
43.
E. M. L.
Beale
,
J. R. Stat. Soc. Ser. B
22
,
41
(
1960
).
44.
F.
Moučka
,
I.
Nezbeda
, and
W. R.
Smith
,
J. Chem. Theory Comput.
9
,
5076
(
2013
).
45.
M.-M.
Walz
,
M. M.
Ghahremanpour
,
P. J.
van Maaren
, and
D.
van der Spoel
,
J. Chem. Theory Comput.
14
,
5933
(
2018
).
46.
J.
Dočkal
,
M.
Lísal
, and
F.
Moučka
,
J. Chem. Theory Comput.
16
,
3677
(
2020
).

Supplementary Material

You do not currently have access to this content.