The characterization and identification of the dynamics of cluster catalysis are crucial to unraveling the origin of catalytic activity. However, the dynamical catalytic effects during the reaction process remain unclear. Herein, we investigate the dynamic coupling effect of elementary reactions with the structural fluctuations of sub-nanometer Au clusters with different sizes using ab initio molecular dynamics and the free energy calculation method. It was found that the adsorption-induced solid-to-liquid phase transitions of the cluster catalysts give rise to abnormal entropy increase, facilitating the proceeding of reaction, and this phase transition catalysis exists in a range of clusters with different sizes. Moreover, clusters with different sizes show different transition temperatures, resulting in a non-trivial size effect. These results unveil the dynamic effect of catalysts and help understand cluster catalysis to design better catalysts rationally.

1.
M.
Turner
,
V. B.
Golovko
,
O. P. H.
Vaughan
,
P.
Abdulkin
,
A.
Berenguer-Murcia
,
M. S.
Tikhov
,
B. F. G.
Johnson
, and
R. M.
Lambert
, “
Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters
,”
Nature
454
,
981
(
2008
).
2.
M. D.
Hughes
,
Y.-J.
Xu
,
P.
Jenkins
,
P.
McMorn
,
P.
Landon
,
D. I.
Enache
,
A. F.
Carley
,
G. A.
Attard
,
G. J.
Hutchings
,
F.
King
,
E. H.
Stitt
,
P.
Johnston
,
K.
Griffin
, and
C. J.
Kiely
, “
Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions
,”
Nature
437
,
1132
(
2005
).
3.
H.
Tsunoyama
,
H.
Sakurai
,
Y.
Negishi
, and
T.
Tsukuda
, “
Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water
,”
J. Am. Chem. Soc.
127
,
9374
(
2005
).
4.
M.
Haruta
,
T.
Kobayashi
,
H.
Sano
, and
N.
Yamada
, “
Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C
,”
Chem. Lett.
16
,
405
(
1987
).
5.
P. L.
Hansen
,
J. B.
Wagner
,
S.
Helveg
,
J. R.
Rostrup-Nielsen
,
B. S.
Clausen
, and
H.
Topsøe
, “
Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals
,”
Science
295
,
2053
(
2002
).
6.
F.
Tao
,
M. E.
Grass
,
Y.
Zhang
,
D. R.
Butcher
,
J. R.
Renzas
,
Z.
Liu
,
J. Y.
Chung
,
B. S.
Mun
,
M.
Salmeron
, and
G. A.
Somorjai
, “
Reaction-driven restructuring of Rh–Pd and Pt–Pd core-shell nanoparticles
,”
Science
322
,
932
(
2008
).
7.
P.
Frondelius
,
H.
Häkkinen
, and
K.
Honkala
, “
Formation of gold(I) edge oxide at flat gold nanoclusters on an ultrathin MgO film under ambient conditions
,”
Angew. Chem., Int. Ed.
49
,
7913
(
2010
).
8.
K. F.
Kalz
,
R.
Kraehnert
,
M.
Dvoyashkin
,
R.
Dittmeyer
,
R.
Gläser
,
U.
Krewer
,
K.
Reuter
, and
J.-D.
Grunwaldt
, “
Future challenges in heterogeneous catalysis: Understanding catalysts under dynamic reaction conditions
,”
ChemCatChem
9
,
17
(
2017
).
9.
N.
Kamiuchi
,
K.
Sun
,
R.
Aso
,
M.
Tane
,
T.
Tamaoka
,
H.
Yoshida
, and
S.
Takeda
, “
Self-activated surface dynamics in gold catalysts under reaction environments
,”
Nat. Commun.
9
,
2060
(
2018
).
10.
Y.
He
,
J.-C.
Liu
,
L.
Luo
,
Y.-G.
Wang
,
J.
Zhu
,
Y.
Du
,
J.
Li
,
S. X.
Mao
, and
C.
Wang
, “
Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
7700
(
2018
).
11.
M.
Gao
,
A.
Lyalin
,
S.
Maeda
, and
T.
Taketsugu
, “
Application of automated reaction path search methods to a systematic search of single-bond activation pathways catalyzed by small metal clusters: A case study on H–H activation by gold
,”
J. Chem. Theory Comput.
10
,
1623
(
2014
).
12.
M.
Gao
,
A.
Lyalin
,
M.
Takagi
,
S.
Maeda
, and
T.
Taketsugu
, “
Reactivity of gold clusters in the regime of structural fluxionality
,”
J. Phys. Chem. C
119
,
11120
(
2015
).
13.
Y.-G.
Wang
,
D.
Mei
,
V.-A.
Glezakou
,
J.
Li
, and
R.
Rousseau
, “
Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles
,”
Nat. Commun.
6
,
6511
(
2015
).
14.
M.-A.
Ha
,
E. T.
Baxter
,
A. C.
Cass
,
S. L.
Anderson
, and
A. N.
Alexandrova
, “
Boron switch for selectivity of catalytic dehydrogenation on size-selected Pt clusters on Al2O3
,”
J. Am. Chem. Soc.
139
,
11568
(
2017
).
15.
E.
Jimenez-Izal
and
A. N.
Alexandrova
, “
Computational design of clusters for catalysis
,”
Annu. Rev. Phys. Chem.
69
,
377
(
2018
).
16.
J.-J.
Sun
and
J.
Cheng
, “
Solid-to-liquid phase transitions of sub-nanometer clusters enhance chemical transformation
,”
Nat. Commun.
10
,
5400
(
2019
).
17.
Q.-Y.
Fan
,
J.-J.
Sun
,
F.
Wang
, and
J.
Cheng
, “
Adsorption-induced liquid-to-solid phase transition of Cu clusters in catalytic dissociation of CO2
,”
J. Phys. Chem. Lett.
11
,
7954
(
2020
).
18.
Q.-Y.
Fan
,
Y.
Wang
, and
J.
Cheng
, “
Size-sensitive dynamic catalysis of subnanometer Cu clusters in CO2 dissociation
,”
J. Phys. Chem. Lett.
12
,
3891
(
2021
).
19.
H.
Arslan
and
M. H.
Güven
, “
Melting dynamics and isomer distributions of small metal clusters
,”
New J. Phys.
7
,
60
(
2005
).
20.
R. S.
Berry
and
B. M.
Smirnov
, “
Entropy behavior in cluster melting
,”
J. Chem. Phys.
130
,
064302
(
2009
).
21.
P.
Buffat
and
J.-P.
Borel
, “
Size effect on the melting temperature of gold particles
,”
Phys. Rev. A
13
,
2287
(
1976
).
22.
S.
Bulusu
and
X. C.
Zeng
, “
Structures and relative stability of neutral gold clusters: Aun (n = 15–19)
,”
J. Chem. Phys.
125
,
154303
(
2006
).
23.
P.
Gruene
,
D. M.
Rayner
,
B.
Redlich
,
A. F. G.
van der Meer
,
J. T.
Lyon
,
G.
Meijer
, and
A.
Fielicke
, “
Structures of neutral Au7, Au19, and Au20 clusters in the gas phase
,”
Science
321
,
674
(
2008
).
24.
S.
Krishnamurty
,
G. S.
Shafai
,
D. G.
Kanhere
,
B.
Soulé de Bas
, and
M. J.
Ford
, “
Ab initio molecular dynamical investigation of the finite temperature behavior of the tetrahedral Au19 and Au20 clusters
,”
J. Phys. Chem. A
111
,
10769
(
2007
).
25.
A.
Roldán
,
J. M.
Ricart
,
F.
Illas
, and
G.
Pacchioni
, “
O2 adsorption and dissociation on neutral, positively and negatively charged Aun (n = 5–79) clusters
,”
Phys. Chem. Chem. Phys.
12
,
10723
(
2010
).
26.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
(
2005
).
27.
M.
Sprik
and
G.
Ciccotti
, “
Free energy from constrained molecular dynamics
,”
J. Chem. Phys.
109
,
7737
(
1998
).
28.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
(
1984
).
29.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
30.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
31.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
32.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
33.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
(
1998
).
34.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
35.
A.
Lyalin
and
T.
Taketsugu
, “
Reactant-promoted oxygen dissociation on gold clusters
,”
J. Phys. Chem. Lett.
1
,
1752
(
2010
).
36.
A.
Lyalin
and
T.
Taketsugu
, “
Cooperative adsorption of O2 and C2H4 on small gold clusters
,”
J. Phys. Chem. C
113
,
12930
(
2009
).
37.
Q.-Y.
Fan
,
Z.-H.
Shi
,
Y.
Wang
, and
J.
Cheng
, “
Charge state dependence of phase transition catalysis of dynamic Cu clusters in CO2 dissociation
,”
J. Phys. Chem. C
125
,
27615
(
2021
).
38.
X.
Liu
,
X.
Wen
, and
R.
Hoffmann
, “
Surface activation of transition metal nanoparticles for heterogeneous catalysis: What we can learn from molecular dynamics
,”
ACS Catal.
8
,
3365
(
2018
).
39.
A. A.
Herzing
,
C. J.
Kiely
,
A. F.
Carley
,
P.
Landon
, and
G. J.
Hutchings
, “
Identification of active gold nanoclusters on iron oxide supports for CO oxidation
,”
Science
321
,
1331
(
2008
).
40.
S.
Lee
,
L. M.
Molina
,
M. J.
López
,
J. A.
Alonso
,
B.
Hammer
,
B.
Lee
,
S.
Seifert
,
R. E.
Winans
,
J. W.
Elam
,
M. J.
Pellin
, and
S.
Vajda
, “
Selective propene epoxidation on immobilized Au6–10 clusters: The effect of hydrogen and water on activity and selectivity
,”
Angew. Chem., Int. Ed.
48
,
1467
(
2009
).
41.
A. S.
Crampton
,
M. D.
Rötzer
,
C. J.
Ridge
,
F. F.
Schweinberger
,
U.
Heiz
,
B.
Yoon
, and
U.
Landman
, “
Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters
,”
Nat. Commun.
7
,
10389
(
2016
).
42.
M.
Haruta
,
S.
Tsubota
,
T.
Kobayashi
,
H.
Kageyama
,
M. J.
Genet
, and
B.
Delmon
, “
Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4
,”
J. Catal.
144
,
175
(
1993
).
43.
M.
Haruta
, “
Size- and support-dependency in the catalysis of gold
,”
Catal. Today
36
,
153
(
1997
).
44.
N.
Lopez
,
T. V. W.
Janssens
,
B. S.
Clausen
,
Y.
Xu
,
M.
Mavrikakis
,
T.
Bligaard
, and
J. K.
Nørskov
, “
On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation
,”
J. Catal.
223
,
232
(
2004
).
45.
M. P.
Casaletto
,
A.
Longo
,
A. M.
Venezia
,
A.
Martorana
, and
A.
Prestianni
, “
Metal-support and preparation influence on the structural and electronic properties of gold catalysts
,”
Appl. Catal., A
302
,
309
(
2006
).
46.
Z.
Ren
,
N.
Liu
,
B.
Chen
,
J.
Li
, and
D.
Mei
, “
Theoretical investigation of the structural stabilities of ceria surfaces and supported metal nanocluster in vapor and aqueous phases
,”
J. Phys. Chem. C
122
,
4828
(
2018
).
47.
B.
Zandkarimi
and
A. N.
Alexandrova
, “
Surface-supported cluster catalysis: Ensembles of metastable states run the show
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
,
e1420
(
2019
).
48.
I. X.
Green
,
W.
Tang
,
M.
Neurock
, and
J. T.
Yates, Jr.
, “
Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst
,”
Science
333
,
736
(
2011
).
49.
G.
Sun
,
A. N.
Alexandrova
, and
P.
Sautet
, “
Pt8 cluster on alumina under a pressure of hydrogen: Support-dependent reconstruction from first-principles global optimization
,”
J. Chem. Phys.
151
,
194703
(
2019
).
50.
X.
Wei
,
B.
Shao
,
Y.
Zhou
,
Y.
Li
,
C.
Jin
,
J.
Liu
, and
W.
Shen
, “
Geometrical structure of the gold–iron(III) oxide interfacial perimeter for CO oxidation
,”
Angew. Chem.
130
,
11459
(
2018
).
51.
Y.-G.
Wang
,
Y.
Yoon
,
V.-A.
Glezakou
,
J.
Li
, and
R.
Rousseau
, “
The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics
,”
J. Am. Chem. Soc.
135
,
10673
(
2013
).

Supplementary Material

You do not currently have access to this content.