The transport of free electrons in a water environment is still poorly understood. We show that additional insight can be brought about by investigating fragmentation patterns of finite-size particles upon electron impact ionization. We have developed a composite protocol aiming to simulate fragmentation of water clusters by electrons with kinetic energies in the range of up to 100 eV. The ionization events for atomistically described molecular clusters are identified by a kinetic Monte Carlo procedure. We subsequently model the fragmentation with classical molecular dynamics simulations, calibrated by non-adiabatic quantum mechanics/molecular mechanics simulations of the ionization process. We consider one-electron ionizations, energy transfer via electronic excitation events, elastic scattering, and also the autoionization events through intermolecular Coulombic decay. The simulations reveal that larger water clusters are often ionized repeatedly, which is the cause of substantial fragmentation. After losing most of its energy, low-energy electrons further contribute to fragmentation by electronic excitations. The simultaneous measurement of cluster size distribution before and after the ionization represents a sensitive measure of the energy transferred into the system by an incident electron.

1.
B. C.
Garrett
,
D. A.
Dixon
,
D. M.
Camaioni
,
D. M.
Chipman
,
M. A.
Johnson
,
C. D.
Jonah
,
G. A.
Kimmel
,
J. H.
Miller
,
T. N.
Rescigno
,
P. J.
Rossky
,
S. S.
Xantheas
,
S. D.
Colson
,
A. H.
Laufer
,
D.
Ray
,
P. F.
Barbara
,
D. M.
Bartels
,
K. H.
Becker
,
K. H.
Bowen
,
S. E.
Bradforth
,
I.
Carmichael
,
J. V.
Coe
,
L. R.
Corrales
,
J. P.
Cowin
,
M.
Dupuis
,
K. B.
Eisenthal
,
J. A.
Franz
,
M. S.
Gutowski
,
K. D.
Jordan
,
B. D.
Kay
,
J. A.
LaVerne
,
S. V.
Lymar
,
T. E.
Madey
,
C. W.
McCurdy
,
D.
Meisel
,
S.
Mukamel
,
A. R.
Nilsson
,
T. M.
Orlando
,
N. G.
Petrik
,
S. M.
Pimblott
,
J. R.
Rustad
,
G. K.
Schenter
,
S. J.
Singer
,
A.
Tokmakoff
,
L.-S.
Wang
, and
T. S.
Zwier
, “
Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances
,”
Chem. Rev.
105
(
1
),
355
390
(
2005
).
2.
S. M.
Pimblott
,
J. A.
LaVerne
, and
A.
Mozumder
, “
Monte Carlo simulation of range and energy deposition by electrons in gaseous and liquid water
,”
J. Phys. Chem.
100
(
20
),
8595
8606
(
1996
).
3.
B.
Winter
and
M.
Faubel
, “
Photoemission from liquid aqueous solutions
,”
Chem. Rev.
106
(
4
),
1176
1211
(
2006
).
4.
R.
Seidel
,
S.
Thürmer
, and
B.
Winter
, “
Photoelectron spectroscopy meets aqueous solution: Studies from a vacuum liquid microjet
,”
J. Phys. Chem. Lett.
2
(
6
),
633
641
(
2011
).
5.
R.
Seidel
,
B.
Winter
, and
S. E.
Bradforth
, “
Valence electronic structure of aqueous solutions: Insights from photoelectron spectroscopy
,”
Annu. Rev. Phys. Chem.
67
(
1
),
283
305
(
2016
).
6.
F.
Wang
,
U.
Schmidhammer
,
J.-P.
Larbre
,
Z.
Zong
,
J.-L.
Marignier
, and
M.
Mostafavi
, “
Time-dependent yield of the hydrated electron and the hydroxyl radical in D2O: A picosecond pulse radiolysis study
,”
Phys. Chem. Chem. Phys.
20
(
23
),
15671
15679
(
2018
).
7.
J.
Ma
,
F.
Wang
, and
M.
Mostafavi
, “
Ultrafast chemistry of water radical cation, H2+, in aqueous solutions
,”
Molecules
23
(
2
),
244
(
2018
).
8.
S.
Thürmer
,
R.
Seidel
,
M.
Faubel
,
W.
Eberhardt
,
J. C.
Hemminger
,
S. E.
Bradforth
, and
B.
Winter
, “
Photoelectron angular distributions from liquid water: Effects of electron scattering
,”
Phys. Rev. Lett.
111
(
17
),
173005
(
2013
).
9.
Y.
Suzuki
,
K.
Nishizawa
,
N.
Kurahashi
, and
T.
Suzuki
, “
Effective attenuation length of an electron in liquid water between 10 and 600 eV
,”
Phys. Rev. E
90
(
1
),
010302
(
2014
).
10.
R.
Signorell
,
M.
Goldmann
,
B. L.
Yoder
,
A.
Bodi
,
E.
Chasovskikh
,
L.
Lang
, and
D.
Luckhaus
, “
Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets
,”
Chem. Phys. Lett.
658
,
1
6
(
2016
).
11.
M.
Goldmann
,
J.
Miguel-Sánchez
,
A. H. C.
West
,
B. L.
Yoder
, and
R.
Signorell
, “
Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles
,”
J. Chem. Phys.
142
(
22
),
224304
(
2015
).
12.
T. E.
Gartmann
,
S.
Hartweg
,
L.
Ban
,
E.
Chasovskikh
,
B. L.
Yoder
, and
R.
Signorell
, “
Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation
,”
Phys. Chem. Chem. Phys.
20
(
24
),
16364
16371
(
2018
).
13.
S.
Barth
,
M.
Ončák
,
V.
Ulrich
,
M.
Mucke
,
T.
Lischke
,
P.
Slavíček
, and
U.
Hergenhahn
, “
Valence ionization of water clusters: From isolated molecules to bulk
,”
J. Phys. Chem. A
113
(
48
),
13519
13527
(
2009
).
14.
R.
Signorell
,
B. L.
Yoder
,
A. H. C.
West
,
J. J.
Ferreiro
, and
C.-M.
Saak
, “
Angle-resolved valence shell photoelectron spectroscopy of neutral nanosized molecular aggregates
,”
Chem. Sci.
5
(
4
),
1283
1295
(
2014
).
15.
L.
Ban
,
B. L.
Yoder
, and
R.
Signorell
, “
Photoemission from free particles and droplets
,”
Annu. Rev. Phys. Chem.
71
(
1
),
315
334
(
2020
).
16.
S.
Hartweg
,
B. L.
Yoder
,
G. A.
Garcia
,
L.
Nahon
, and
R.
Signorell
, “
Size-resolved photoelectron anisotropy of gas phase water clusters and predictions for liquid water
,”
Phys. Rev. Lett.
118
(
10
),
103402
(
2017
).
17.
T. D.
Märk
and
G. H.
Dunn
, in
Electron Impact Ionization
, edited by
T. D.
Märk
and
G. H.
Dunn
(
Springer
,
Vienna
,
1985
).
18.
J.
Lengyel
,
A.
Pysanenko
,
V.
Poterya
,
J.
Kočišek
, and
M.
Fárník
, “
Extensive water cluster fragmentation after low energy electron ionization
,”
Chem. Phys. Lett.
612
,
256
261
(
2014
).
19.
L.
Belau
,
K. R.
Wilson
,
S. R.
Leone
, and
M.
Ahmed
, “
Vacuum ultraviolet (VUV) photoionization of small water clusters
,”
J. Phys. Chem. A
111
(
40
),
10075
10083
(
2007
).
20.
D.
Becker
,
C. W.
Dierking
,
J.
Suchan
,
F.
Zurheide
,
J.
Lengyel
,
M.
Fárník
,
P.
Slavíček
,
U.
Buck
, and
T.
Zeuch
, “
Temperature evolution in IR action spectroscopy experiments with sodium doped water clusters
,”
Phys. Chem. Chem. Phys.
23
,
7682
(
2020
).
21.
C. C.
Pradzynski
,
R. M.
Forck
,
T.
Zeuch
,
P.
Slavíček
, and
U.
Buck
, “
A fully size-resolved perspective on the crystallization of water clusters
,”
Science
337
(
6101
),
1529
1532
(
2012
).
22.
B. L.
Yoder
,
J. H.
Litman
,
P. W.
Forysinski
,
J. L.
Corbett
, and
R.
Signorell
, “
Sizer for neutral weakly bound ultrafine aerosol particles based on sodium doping and mass spectrometric detection
,”
J. Phys. Chem. Lett.
2
(
20
),
2623
2628
(
2011
).
23.
M.
Ahmed
and
O.
Kostko
, “
From atoms to aerosols: Probing clusters and nanoparticles with synchrotron based mass spectrometry and X-ray spectroscopy
,”
Phys. Chem. Chem. Phys.
22
(
5
),
2713
2737
(
2020
).
24.
A.
Golan
and
M.
Ahmed
, “
Ionization of water clusters mediated by exciton energy transfer from argon clusters
,”
J. Phys. Chem. Lett.
3
(
4
),
458
462
(
2012
).
25.
J.
Kočišek
,
J.
Lengyel
,
M.
Fárník
, and
P.
Slavíček
, “
Energy and charge transfer in ionized argon coated water clusters
,”
J. Chem. Phys.
139
(
21
),
214308
(
2013
).
26.
S.
Yang
,
S. M.
Brereton
,
S.
Nandhra
,
A. M.
Ellis
,
B.
Shang
,
L.-F.
Yuan
, and
J.
Yang
, “
Electron impact ionization of water-doped superfluid helium nanodroplets: Observation of He(H2O)n+ clusters
,”
J. Chem. Phys.
127
(
13
),
134303
(
2007
).
27.
B.
Winter
,
R.
Weber
,
W.
Widdra
,
M.
Dittmar
,
M.
Faubel
, and
I. V.
Hertel
, “
Full valence band photoemission from liquid water using EUV synchrotron radiation
,”
J. Phys. Chem. A
108
(
14
),
2625
2632
(
2004
).
28.
O.
Marsalek
,
C. G.
Elles
,
P. A.
Pieniazek
,
E.
Pluhařová
,
J.
VandeVondele
,
S. E.
Bradforth
, and
P.
Jungwirth
, “
Chasing charge localization and chemical reactivity following photoionization in liquid water
,”
J. Chem. Phys.
135
(
22
),
224510
(
2011
).
29.
O.
Svoboda
,
D.
Hollas
,
M.
Ončák
, and
P.
Slavíček
, “
Reaction selectivity in an ionized water dimer: Nonadiabatic ab initio dynamics simulations
,”
Phys. Chem. Chem. Phys.
15
(
27
),
11531
11542
(
2013
).
30.
T.
Jahnke
,
H.
Sann
,
T.
Havermeier
,
K.
Kreidi
,
C.
Stuck
,
M.
Meckel
,
M.
Schöffler
,
N.
Neumann
,
R.
Wallauer
,
S.
Voss
,
A.
Czasch
,
O.
Jagutzki
,
A.
Malakzadeh
,
F.
Afaneh
,
T.
Weber
,
H.
Schmidt-Böcking
, and
R.
Dörner
, “
Ultrafast energy transfer between water molecules
,”
Nat. Phys.
6
(
2
),
139
142
(
2010
).
31.
M.
Mucke
,
M.
Braune
,
S.
Barth
,
M.
Förstel
,
T.
Lischke
,
V.
Ulrich
,
T.
Arion
,
U.
Becker
,
A.
Bradshaw
, and
U.
Hergenhahn
, “
A hitherto unrecognized source of low-energy electrons in water
,”
Nat. Phys.
6
(
2
),
143
146
(
2010
).
32.
C.
Richter
,
D.
Hollas
,
C.-M.
Saak
,
M.
Förstel
,
T.
Miteva
,
M.
Mucke
,
O.
Björneholm
,
N.
Sisourat
,
P.
Slavíček
, and
U.
Hergenhahn
, “
Competition between proton transfer and intermolecular coulombic decay in water
,”
Nat. Commun.
9
(
1
),
4988
(
2018
).
33.
I.
Hjelte
,
M. N.
Piancastelli
,
R. F.
Fink
,
O.
Björneholm
,
M.
Bässler
,
R.
Feifel
,
A.
Giertz
,
H.
Wang
,
K.
Wiesner
,
A.
Ausmees
,
C.
Miron
,
S. L.
Sorensen
, and
S.
Svensson
, “
Evidence for ultra-fast dissociation of molecular water from resonant auger spectroscopy
,”
Chem. Phys. Lett.
334
(
1–3
),
151
158
(
2001
).
34.
S.
Thürmer
,
M.
Ončák
,
N.
Ottosson
,
R.
Seidel
,
U.
Hergenhahn
,
S. E.
Bradforth
,
P.
Slavíček
, and
B.
Winter
, “
On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation
,”
Nat. Chem.
5
(
7
),
590
596
(
2013
).
35.
P.
Slavíček
,
B.
Winter
,
L. S.
Cederbaum
, and
N. V.
Kryzhevoi
, “
Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X-ray irradiated liquid water
,”
J. Am. Chem. Soc.
136
(
52
),
18170
18176
(
2014
).
36.
P.
Slavíček
,
N. V.
Kryzhevoi
,
E. F.
Aziz
, and
B.
Winter
, “
Relaxation processes in aqueous systems upon X-ray ionization: Entanglement of electronic and nuclear dynamics
,”
J. Phys. Chem. Lett.
7
(
2
),
234
243
(
2016
).
37.
R.
Mota
,
R.
Parafita
,
A.
Giuliani
,
M.-J.
Hubin-Franskin
,
J. M. C.
Lourenço
,
G.
Garcia
,
S. V.
Hoffmann
,
N. J.
Mason
,
P. A.
Ribeiro
,
M.
Raposo
, and
P.
Limão-Vieira
, “
Water VUV electronic state spectroscopy by synchrotron radiation
,”
Chem. Phys. Lett.
416
(
1–3
),
152
159
(
2005
).
38.
H. G.
Paretzke
, “
Simulation von elektronenspuren imenergiebereich 0.01–10 keV in wasserdampf
,” GSF-Bericht 24/88,
1988
.
39.
H.
Nikjoo
,
S.
Uehara
,
D.
Emfietzoglou
, and
F. A.
Cucinotta
, “
Track-structure codes in radiation research
,”
Radiat. Meas.
41
(
9–10
),
1052
1074
(
2006
).
40.
S.
Uehara
and
H.
Nikjoo
, “
Monte Carlo simulation of water radiolysis for low-energy charged particles
,”
J. Radiat. Res.
47
(
1
),
69
81
(
2006
).
41.
V.
Poterya
,
M.
Fárník
,
M.
Ončák
, and
P.
Slavíček
, “
Water photodissociation in free ice nanoparticles at 243 nm and 193 nm
,”
Phys. Chem. Chem. Phys.
10
(
32
),
4835
(
2008
).
42.
I.
Baccarelli
,
F. A.
Gianturco
,
E.
Scifoni
,
A. V.
Solov’yov
, and
E.
Surdutovich
, “
Molecular level assessments of radiation biodamage
,”
Eur. Phys. J. D
60
(
1
),
1
10
(
2010
).
43.
M.
Gomez-Mendoza
,
A.
Banyasz
,
T.
Douki
,
D.
Markovitsi
, and
J.-L.
Ravanat
, “
Direct oxidative damage of naked DNA generated upon absorption of UV radiation by nucleobases
,”
J. Phys. Chem. Lett.
7
(
19
),
3945
3948
(
2016
).
44.
S.
Lehnert
,
Biomolecular Action of Ionizing Radiation
(
Taylor & Francis
,
New York
,
2008
).
45.
E. J.
Hall
and
A. J.
Giaccia
,
Radiobiology for the Radiologist
(
Lippincott Williams & Wilkins
,
2019
).
46.
H.
Tachikawa
, “
Direct ab-initio trajectory study on the ionization dynamics of the water dimer
,”
J. Phys. Chem. A
106
(
30
),
6915
6921
(
2002
).
47.
E.
Livshits
,
R. S.
Granot
, and
R.
Baer
, “
A density functional theory for studying ionization processes in water clusters
,”
J. Phys. Chem. A
115
(
23
),
5735
5744
(
2011
).
48.
O.
Vendrell
,
S. D.
Stoychev
, and
L. S.
Cederbaum
, “
Generation of highly damaging H2O+ radicals by inner valence shell ionization of water
,”
ChemPhysChem
11
(
5
),
1006
1009
(
2010
).
49.
J.
Chalabala
,
F.
Uhlig
, and
P.
Slavíček
, “
Assessment of real-time time-dependent density functional theory (RT-TDDFT) in radiation chemistry: Ionized water dimer
,”
J. Phys. Chem. A
122
(
12
),
3227
3237
(
2018
).
50.
V.
Sharma
and
M.
Fernández-Serra
, “
Proton-transfer dynamics in ionized water chains using real-time time-dependent density functional theory
,”
Phys. Rev. Res.
2
(
4
),
043082
(
2020
).
51.
C.
Zhang
,
J.
Lu
,
T.
Feng
, and
H.
Rottke
, “
Proton transfer dynamics following strong-field ionization of the water dimer
,”
Phys. Rev. A
99
(
5
),
053408
(
2019
).
52.
Z. P.
Wang
,
P. M.
Dinh
,
P. G.
Reinhard
, and
E.
Suraud
, “
Ultrafast nonadiabatic dynamics of a water dimer in femtosecond laser pulses
,”
Laser Phys.
24
(
10
),
106004
(
2014
).
53.
C.
Champion
,
C.
Le Loirec
, and
B.
Stosic
, “
EPOTRAN: A full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water
,”
Int. J. Radiat. Biol.
88
(
1–2
),
54
61
(
2012
).
54.
F.
Blanco
,
A.
Muñoz
,
D.
Almeida
,
F.
Ferreira da Silva
,
P.
Limão-Vieira
,
M. C.
Fuss
,
A. G.
Sanz
, and
G.
García
, “
Modelling low energy electron and positron tracks in biologically relevant media
,”
Eur. Phys. J. D
67
(
9
),
199
(
2013
).
55.
Y. G.
Li
,
Y.
Yang
,
M. P.
Short
,
Z. J.
Ding
,
Z.
Zeng
, and
J.
Li
, “
IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry
,”
Sci. Rep.
5
(
1
),
18130
(
2015
).
56.
U.
Buck
and
C.
Steinbach
,
Vibrational Spectroscopy and Reactions of Water Clusters
(
Springer-Verlag Berlin Heidelberg
,
2003
), pp.
53
77
.
57.
J.
Lengyel
,
A.
Pysanenko
,
V.
Poterya
,
P.
Slavíček
,
M.
Fárník
,
J.
Kočišek
, and
J.
Fedor
, “
Irregular shapes of water clusters generated in supersonic expansions
,”
Phys. Rev. Lett.
112
(
11
),
113401
(
2014
).
58.
M.
Klíma
and
J.
Kolafa
, “
Direct molecular dynamics simulation of nucleation during supersonic expansion of gas to a vacuum
,”
J. Chem. Theory Comput.
14
(
5
),
2332
2340
(
2018
).
59.
D.
Celný
,
M.
Klíma
, and
J.
Kolafa
, “
Molecular dynamics of heterogeneous systems on GPUs and their application to nucleation in gas expanding to a vacuum
,”
J. Chem. Theory Comput.
17
(
12
),
7397
7405
(
2021
).
60.
G.
Moliere
, “
Theorie der streuung schneller geladener teilchen II. Mehrfach-und vielfachstreuung
,”
Z. Naturforsch., A
3
(
2
),
78
97
(
1948
).
61.
Y.-K.
Kim
and
M. E.
Rudd
, “
Binary-encounter-dipole model for electron-impact ionization
,”
Phys. Rev. A
50
(
5
),
3954
3967
(
1994
).
63.
W.
Eckstein
,
Computer Simulation of Ion-Solid Interactions
, Springer Series in Materials Science Vol. 10 (
Springer
,
Berlin, Heidelberg
,
1991
).
64.
K.
Watanabe
and
M. L.
Klein
, “
Effective pair potentials and the properties of water
,”
Chem. Phys.
131
(
2–3
),
157
167
(
1989
).
65.
P.
Maksyutenko
,
T. R.
Rizzo
, and
O. V.
Boyarkin
, “
A direct measurement of the dissociation energy of water
,”
J. Chem. Phys.
125
(
18
),
181101
(
2006
).
66.
V.
Svoboda
,
R.
Michiels
,
A. C.
LaForge
,
J.
Med
,
F.
Stienkemeier
,
P.
Slavíček
, and
H. J.
Wörner
, “
Real-time observation of water radiolysis and hydrated electron formation induced by extreme-ultraviolet pulses
,”
Sci. Adv.
6
(
3
),
eaaz0385
(
2020
).
67.
J. W.
Boyle
,
J. A.
Ghormley
,
C. J.
Hochanadel
, and
J. F.
Riley
, “
Production of hydrated electrons by flash photolysis of liquid water with light in the first continuum
,”
J. Phys. Chem.
73
(
9
),
2886
2890
(
1969
).
68.
P.
Han
and
D. M.
Bartels
, “
Hydrogen/deuterium isotope effects in water radiolysis. 2. Dissociation of electronically excited water
,”
J. Phys. Chem.
94
(
15
),
5824
5833
(
1990
).
69.
F.
Ballarini
,
M.
Biaggi
,
M.
Merzagora
,
A.
Ottolenghi
,
M.
Dingfelder
,
W.
Friedland
,
P.
Jacob
, and
H. G.
Paretzke
, “
Stochastic aspects and uncertainties in the prechemical and chemical stages of electron tracks in liquid water: A quantitative analysis based on Monte Carlo simulations
,”
Radiat. Environ. Biophys.
39
(
3
),
179
188
(
2000
).
70.
J.
Yang
,
R.
Dettori
,
J. P. F.
Nunes
,
N. H.
List
,
E.
Biasin
,
M.
Centurion
,
Z.
Chen
,
A. A.
Cordones
,
D. P.
Deponte
,
T. F.
Heinz
,
M. E.
Kozina
,
K.
Ledbetter
,
M.-F.
Lin
,
A. M.
Lindenberg
,
M.
Mo
,
A.
Nilsson
,
X.
Shen
,
T. J. A.
Wolf
,
D.
Donadio
,
K. J.
Gaffney
,
T. J.
Martinez
, and
X.
Wang
, “
Direct observation of ultrafast hydrogen bond strengthening in liquid water
,”
Nature
596
(
7873
),
531
535
(
2021
).
71.
D. J.
Bonthuis
,
S. I.
Mamatkulov
, and
R. R.
Netz
, “
Optimization of classical nonpolarizable force fields for OH and H3O+
,”
J. Chem. Phys.
144
(
10
),
104503
(
2016
).
72.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
(
24
),
6269
6271
(
1987
).
73.
C. M.
Breneman
and
K. B.
Wiberg
, “
Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
,”
J. Comput. Chem.
11
(
3
),
361
373
(
1990
).
74.
C. A.
Reed
, “
Myths about the proton. The nature of H+ in condensed media
,”
Acc. Chem. Res.
46
(
11
),
2567
2575
(
2013
).
75.
M.
Park
,
I.
Shin
,
N. J.
Singh
, and
K. S.
Kim
, “
Eigen and Zundel forms of small protonated water clusters: Structures and infrared spectra
,”
J. Phys. Chem. A
111
(
42
),
10692
10702
(
2007
).
76.
E. S.
Stoyanov
,
I. V.
Stoyanova
, and
C. A.
Reed
, “
The unique nature of H+ in water
,”
Chem. Sci.
2
(
3
),
462
472
(
2011
).
77.
M.
Roeselová
,
J.
Vieceli
,
L. X.
Dang
,
B. C.
Garrett
, and
D. J.
Tobias
, “
Hydroxyl radical at the air–water interface
,”
J. Am. Chem. Soc.
126
(
50
),
16308
16309
(
2004
).
78.
M. G.
Campo
and
J. R.
Grigera
, “
Classical molecular-dynamics simulation of the hydroxyl radical in water
,”
J. Chem. Phys.
123
(
8
),
084507
(
2005
).
79.
C.
Vega
and
E.
de Miguel
, “
Surface tension of the most popular models of water by using the test-area simulation method
,”
J. Chem. Phys.
126
(
15
),
154707
(
2007
).
80.
N. B.
Vargaftik
,
B. N.
Volkov
, and
L. D.
Voljak
, “
International tables of the surface tension of water
,”
J. Phys. Chem. Ref. Data
12
(
3
),
817
820
(
1983
).
81.
P. T.
Kiss
and
A.
Baranyai
, “
A systematic development of a polarizable potential of water
,”
J. Chem. Phys.
138
(
20
),
204507
(
2013
).
82.
L. C.
Ch’ng
,
A. K.
Samanta
,
G.
Czakó
,
J. M.
Bowman
, and
H.
Reisler
, “
Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in the water dimer
,”
J. Am. Chem. Soc.
134
(
37
),
15430
15435
(
2012
).
83.
S.
Scheiner
, “
Ab initio studies of hydrogen bonds: The water dimer paradigm
,”
Annu. Rev. Phys. Chem.
45
(
1
),
23
56
(
1994
).
84.
B. E.
Rocher-Casterline
,
L. C.
Ch’ng
,
A. K.
Mollner
, and
H.
Reisler
, “
Communication: Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging
,”
J. Chem. Phys.
134
(
21
),
211101
(
2011
).
85.
See http://www.vscht.cz/fch/software/macsimus for the source code and user guide of package MACSIMUS; accessed 1 November 2021.
86.
D.
Hollas
,
J.
Suchan
,
M.
Ončák
, and
P.
Slavíček
(
2018
). “
PHOTOX/ABIN v1.1
,” Zenodo.
87.
P.
Sherwood
,
A. H.
de Vries
,
M. F.
Guest
,
G.
Schreckenbach
,
C. R. A.
Catlow
,
S. A.
French
,
A. A.
Sokol
,
S. T.
Bromley
,
W.
Thiel
,
A. J.
Turner
,
S.
Billeter
,
F.
Terstegen
,
S.
Thiel
,
J.
Kendrick
,
S. C.
Rogers
,
J.
Casci
,
M.
Watson
,
F.
King
,
E.
Karlsen
,
M.
Sjøvoll
,
A.
Fahmi
,
A.
Schäfer
, and
C.
Lennartz
, “
QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis
,”
J. Mol. Struct.: THEOCHEM
632
(
1–3
),
1
28
(
2003
).
88.
See www.chemshell.org for ChemShell, a Computational Chemistry Shell.
89.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, version 2012.1, a package of ab initio programs,
Cardiff
,
UK
,
2012
.
90.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
(
2
),
024503
(
2006
).
91.
W.
Smith
and
T. R.
Forester
, “
DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package
,”
J. Mol. Graphics
14
(
3
),
136
141
(
1996
).
92.
J.
Suchan
,
J.
Janoš
, and
P.
Slavíček
, “
Pragmatic approach to photodynamics: Mixed Landau–Zener surface hopping with intersystem crossing
,”
J. Chem. Theory Comput.
16
(
9
),
5809
5820
(
2020
).
93.
A. K.
Belyaev
,
C.
Lasser
, and
G.
Trigila
, “
Landau–Zener type surface hopping algorithms
,”
J. Chem. Phys.
140
(
22
),
224108
(
2014
).
94.
C. M.
Truesdale
,
S.
Southworth
,
P. H.
Kobrin
,
D. W.
Lindle
,
G.
Thornton
, and
D. A.
Shirley
, “
Photoelectron angular distributions of H2O
,”
J. Chem. Phys.
76
(
2
),
860
865
(
1982
).
95.
C. F.
Perry
,
I.
Jordan
,
P.
Zhang
,
A.
von Conta
,
F. B.
Nunes
, and
H. J.
Wörner
, “
Photoelectron spectroscopy of liquid water with tunable extreme-ultraviolet radiation: Effects of electron scattering
,”
J. Phys. Chem. Lett.
12
(
11
),
2990
2996
(
2021
).
96.
M. N.
Pohl
,
E.
Muchová
,
R.
Seidel
,
H.
Ali
,
Š.
Sršeň
,
I.
Wilkinson
,
B.
Winter
, and
P.
Slavíček
, “
Do water’s electrons care about electrolytes?
,”
Chem. Sci.
10
(
3
),
848
865
(
2019
).
97.
N.
Kurahashi
,
S.
Karashima
,
Y.
Tang
,
T.
Horio
,
B.
Abulimiti
,
Y.-I.
Suzuki
,
Y.
Ogi
,
M.
Oura
, and
T.
Suzuki
, “
Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X
,”
J. Chem. Phys.
140
(
17
),
174506
(
2014
).
98.
S.
Malerz
,
F.
Trinter
,
U.
Hergenhahn
,
A.
Ghrist
,
H.
Ali
,
C.
Nicolas
,
C.-M.
Saak
,
C.
Richter
,
S.
Hartweg
,
L.
Nahon
,
C.
Lee
,
C.
Goy
,
D. M.
Neumark
,
G.
Meijer
,
I.
Wilkinson
,
B.
Winter
, and
S.
Thürmer
, “
Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions
,”
Phys. Chem. Chem. Phys.
23
(
14
),
8246
8260
(
2021
).
99.
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Aqueous solvation free energies of ions and ion–water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton
,”
J. Phys. Chem. B
110
(
32
),
16066
16081
(
2006
).
100.
D. A.
Armstrong
,
R. E.
Huie
,
W. H.
Koppenol
,
S. V.
Lymar
,
G.
Merényi
,
P.
Neta
,
B.
Ruscic
,
D. M.
Stanbury
,
S.
Steenken
, and
P.
Wardman
, “
Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report)
,”
Pure Appl. Chem.
87
(
11–12
),
1139
1150
(
2015
).
101.
M. W.
Chase
,
C. A.
Davies
,
J. R.
Downey
,Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
, NIST JANAF Thermochemical Tables Version 1.0,
U.S. Department of Commerce
,
1985
.
102.
J. R.
Pliego
and
J. M.
Riveros
, “
New values for the absolute solvation free energy of univalent ions in aqueous solution
,”
Chem. Phys. Lett.
332
(
5–6
),
597
602
(
2000
).
103.
T.
Autrey
,
A. K.
Brown
,
D. M.
Camaioni
,
M.
Dupuis
,
N. S.
Foster
, and
A.
Getty
, “
Thermochemistry of aqueous hydroxyl radical from advances in photoacoustic calorimetry and ab initio continuum solvation theory
,”
J. Am. Chem. Soc.
126
(
12
),
3680
3681
(
2004
).
104.
R.
Vácha
,
P.
Slavíček
,
M.
Mucha
,
B. J.
Finlayson-Pitts
, and
P.
Jungwirth
, “
Adsorption of atmospherically relevant gases at the air/water interface: Free energy profiles of aqueous solvation of N2, O2, O3, OH, H2O, HO2, and H2O2
,”
J. Phys. Chem. A
108
(
52
),
11573
11579
(
2004
).
105.
O. K.
Rice
and
H. C.
Ramsperger
, “
Theories of unimolecular gas reactions at low pressures
,”
J. Am. Chem. Soc.
49
(
7
),
1617
1629
(
1927
).
106.
L. S.
Kassel
, “
Studies in homogeneous gas reactions. I
,”
J. Phys. Chem.
32
(
2
),
225
242
(
1928
).
107.
Y.
Okada
and
Y.
Hara
, “
Calculation of the sticking probability of a water molecule to a water cluster
,”
Earozoru Kenkyu
22
(
2
),
147
151
(
2007
).
108.
K.
Hansen
,
P. U.
Andersson
, and
E.
Uggerud
, “
Activation energies for evaporation from protonated and deprotonated water clusters from mass spectra
,”
J. Chem. Phys.
131
(
12
),
124303
(
2009
).
109.
C.
Harris
and
A. J.
Stace
, “
Coulomb fission in multiply-charged ammonia clusters: Accurate measurements of the Rayleigh instability limit from fragmentation patterns
,”
J. Phys. Chem. A
122
(
10
),
2634
2644
(
2018
).
110.
M.
Lewerenz
,
B.
Schilling
, and
J. P.
Toennies
, “
A new scattering deflection method for determining and selecting the sizes of large liquid clusters of 4He
,”
Chem. Phys. Lett.
206
(
1–4
),
381
387
(
1993
).
111.
A.
Mauracher
,
O.
Echt
,
A. M.
Ellis
,
S.
Yang
,
D. K.
Bohme
,
J.
Postler
,
A.
Kaiser
,
S.
Denifl
, and
P.
Scheier
, “
Cold physics and chemistry: Collisions, ionization and reactions inside helium nanodroplets close to zero K
,”
Phys. Rep.
751
,
1
90
(
2018
).

Supplementary Material

You do not currently have access to this content.