Conical intersections (CIs) provide effective fast nonradiative decay pathways for electronic excitation, which can significantly influence molecular photoluminescence properties. However, in many cases, crossing a CI does not have direct observables, making studies of CIs experimentally challenging. Herein, the theoretically predicted double CIs by cis–trans twisting and cyclization in tetraphenyl ethylene, a well-known aggregation-induced emission molecule, are investigated with excitation dependent ultrafast UV/IR spectroscopy and fluorescence. Both the fluorescence quantum yield and the efficiency of cyclization are found to be smaller with a shorter excitation wavelength. An abrupt change occurs at about 300–310 nm. The results imply that crossing the twisting CI has a larger barrier than the cyclization CI, and the cis–trans twisting motion is probably involved with large solvation reorganization.

1.
A.
Rosspeintner
,
B.
Lang
, and
E.
Vauthey
,
Annu. Rev. Phys. Chem.
64
(
1
),
247
271
(
2013
).
2.
M.
Kasha
,
Discuss. Faraday Soc.
9
,
14
(
1950
).
3.
P.
Klán
and
J.
Wirz
,
Photochemistry of Organic Compounds: From Concepts to Practice
(
John Wiley & Sons, Inc.
,
2009
).
4.
C.-C.
Hsu
,
C.-C.
Lin
,
P.-T.
Chou
,
C.-H.
Lai
,
C.-W.
Hsu
,
C.-H.
Lin
, and
Y.
Chi
,
J. Am. Chem. Soc.
134
(
18
),
7715
7724
(
2012
).
5.
O.
Yushchenko
,
G.
Licari
,
S.
Mosquera-Vazquez
,
N.
Sakai
,
S.
Matile
, and
E.
Vauthey
,
J. Phys. Chem. Lett.
6
(
11
),
2096
2100
(
2015
).
6.
Z. R.
Grabowski
,
K.
Rotkiewicz
, and
W.
Rettig
,
Chem. Rev.
103
(
10
),
3899
4032
(
2003
).
7.
A.
Pigliucci
,
P.
Nikolov
,
A.
Rehaman
,
L.
Gagliardi
,
C. J.
Cramer
, and
E.
Vauthey
,
J. Phys. Chem. A
110
(
33
),
9988
9994
(
2006
).
8.
S.
Scuppa
,
L.
Orian
,
A.
Donoli
,
S.
Santi
, and
M.
Meneghetti
,
J. Phys. Chem. A
115
(
30
),
8344
8349
(
2011
).
9.
K. W.
Fan
,
H. L.
Luk
, and
D. L.
Phillips
,
Int. J. Mol. Sci.
22
(
20
),
11103
(
2021
).
10.
H.-W.
Tseng
,
J.-Y.
Shen
,
T.-Y.
Kuo
,
T.-S.
Tu
,
Y.-A.
Chen
,
A. P.
Demchenko
, and
P.-T.
Chou
,
Chem. Sci.
7
(
1
),
655
665
(
2016
).
11.
A.
Kumari
and
S.
Gupta
,
J. Biophotonics
12
(
1
),
e201800086
(
2019
).
12.
Y.
Zhou
,
G.
Baryshnikov
,
X.
Li
,
M.
Zhu
,
H.
Ågren
, and
L.
Zhu
,
Chem. Mater.
30
(
21
),
8008
8016
(
2018
).
13.
G.
Brancato
,
G.
Signore
,
P.
Neyroz
,
D.
Polli
,
G.
Cerullo
,
G.
Abbandonato
,
L.
Nucara
,
V.
Barone
,
F.
Beltram
, and
R.
Bizzarri
,
J. Phys. Chem. B
119
(
20
),
6144
6154
(
2015
).
14.
T.
Yang
,
S.
Dai
,
H.
Tan
,
Y.
Zong
,
Y.
Liu
,
J.
Chen
,
K.
Zhang
,
P.
Wu
,
S.
Zhang
,
J.
Xu
, and
Y.
Tian
,
J. Phys. Chem. C
123
(
30
),
18638
18645
(
2019
).
15.
N. K.
Swenson
,
M. A.
Ratner
, and
E. A.
Weiss
,
J. Phys. Chem. C
120
(
12
),
6859
6868
(
2016
).
16.
R. W.
Tilluck
,
N.
Mohan T. M.
,
C. V.
Hetherington
,
C. H.
Leslie
,
S.
Sil
,
J.
Frazier
,
M.
Zhang
,
B. G.
Levine
,
P. G.
Van Patten
, and
W. F.
Beck
,
J. Phys. Chem. Lett.
12
(
39
),
9677
9683
(
2021
).
17.
J.
Guan
,
C.
Shen
,
J.
Peng
, and
J.
Zheng
,
J. Phys. Chem. Lett.
12
(
17
),
4218
4226
(
2021
).
18.
J.
Guan
,
R.
Wei
,
A.
Prlj
,
J.
Peng
,
K. H.
Lin
,
J.
Liu
,
H.
Han
,
C.
Corminboeuf
,
D.
Zhao
,
Z.
Yu
, and
J.
Zheng
,
Angew. Chem., Int. Ed.
59
(
35
),
14903
14909
(
2020
).
19.
P.
Nag
and
S. R.
Vennapusa
,
J. Chem. Phys.
153
(
8
),
084306
(
2020
).
20.
S.
Gozem
,
E.
Mirzakulova
,
I.
Schapiro
,
F.
Melaccio
,
K. D.
Glusac
, and
M.
Olivucci
,
Angew. Chem.
126
(
37
),
10028
10033
(
2014
).
21.
A.
Nakayama
and
T.
Taketsugu
,
J. Phys. Chem. A
115
(
32
),
8808
8815
(
2011
).
22.
J.
Ma
,
G. B.
Dutt
,
D. H.
Waldeck
, and
M. B.
Zimmt
,
J. Am. Chem. Soc.
116
(
23
),
10619
10629
(
1994
).
23.
S.
Kayal
,
K.
Roy
, and
S.
Umapathy
,
J. Chem. Phys.
148
(
2
),
024301
(
2018
).

Supplementary Material

You do not currently have access to this content.