Molecular Dynamics (MD) simulation is a powerful tool for understanding the dynamics and structure of matter. Since the resolution of MD is atomic-scale, achieving long timescale simulations with femtosecond integration is very expensive. In each MD step, numerous iterative computations are performed to calculate energy based on different types of interaction and their corresponding spatial gradients. These repetitive computations can be learned and surrogated by a deep learning model, such as a Graph Neural Network (GNN). In this work, we developed a GNN Accelerated MD (GAMD) model that directly predicts forces, given the state of the system (atom positions, atom types), bypassing the evaluation of potential energy. By training the GNN on a variety of data sources (simulation data derived from classical MD and density functional theory), we show that GAMD can predict the dynamics of two typical molecular systems, Lennard-Jones system and water system, in the NVT ensemble with velocities regulated by a thermostat. We further show that GAMD’s learning and inference are agnostic to the scale, where it can scale to much larger systems at test time. We also perform a comprehensive benchmark test comparing our implementation of GAMD to production-level MD software, showing GAMD’s competitive performance on the large-scale simulation.

1.
S. A.
Hollingsworth
and
R. O.
Dror
, “
Molecular dynamics simulation for all
,”
Neuron
99
,
1129
1143
(
2018
).
2.
M.
Karplus
and
J. A.
McCammon
, “
Molecular dynamics simulations of biomolecules
,”
Nat. Struct. Biol.
9
,
646
652
(
2002
).
3.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
4.
O. T.
Unke
,
D.
Koner
,
S.
Patra
,
S.
Käser
, and
M.
Meuwly
, “
High-dimensional potential energy surfaces for molecular simulations: From empiricism to machine learning
,”
Mach. Learn.: Sci. Technol.
1
,
013001
(
2020
).
5.
J. A.
Harrison
,
J. D.
Schall
,
S.
Maskey
,
P. T.
Mikulski
,
M. T.
Knippenberg
, and
B. H.
Morrow
, “
Review of force fields and intermolecular potentials used in atomistic computational materials research
,”
Appl. Phys. Rev.
5
,
031104
(
2018
).
6.
E.
Paquet
and
H. L.
Viktor
, “
Molecular dynamics, Monte Carlo simulations, and Langevin dynamics: A computational review
,”
BioMed Res. Int.
2015
,
183918
.
7.
R. O.
Dror
,
M. Ø.
Jensen
,
D. W.
Borhani
, and
D. E.
Shaw
, “
Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations
,”
J. Gen. Physiol.
135
,
555
562
(
2010
).
8.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
9.
W.
Hu
,
M.
Shuaibi
,
A.
Das
,
S.
Goyal
,
A.
Sriram
,
J.
Leskovec
,
D.
Parikh
, and
C. L.
Zitnick
, “
ForceNet: A graph neural network for large-scale quantum calculations
,” arxiv.org/abs/2103.01436 (
2021
).
10.
J. P.
Mailoa
,
M.
Kornbluth
,
S.
Batzner
,
G.
Samsonidze
,
S. T.
Lam
,
J.
Vandermause
,
C.
Ablitt
,
N.
Molinari
, and
B.
Kozinsky
, “
A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems
,”
Nat. Mach. Intell.
1
,
471
479
(
2019
).
11.
C. W.
Park
,
M.
Kornbluth
,
J.
Vandermause
,
C.
Wolverton
,
B.
Kozinsky
, and
J. P.
Mailoa
, “
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
,”
npj Comput. Mater.
7
,
73
(
2021
).
12.
B. E.
Husic
,
N. E.
Charron
,
D.
Lemm
,
J.
Wang
,
A.
Pérez
,
M.
Majewski
,
A.
Krämer
,
Y.
Chen
,
S.
Olsson
,
G.
de Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Coarse graining molecular dynamics with graph neural networks
,”
J. Chem. Phys.
153
,
194101
(
2020
).
13.
J.
Wang
,
S.
Olsson
,
C.
Wehmeyer
,
A.
Pérez
,
N. E.
Charron
,
G.
de Fabritiis
,
F.
Noé
, and
C.
Clementi
, “
Machine learning of coarse-grained molecular dynamics force fields
,”
ACS Cent. Sci.
5
,
755
767
(
2019
).
14.
O. T.
Unke
,
S.
Chmiela
,
M.
Gastegger
,
K. T.
Schütt
,
H. E.
Sauceda
, and
K.-R.
Müller
, “
SpookyNet: Learning force fields with electronic degrees of freedom and nonlocal effects
,”
Nat. Commun.
12
,
7273
(
2021
).
15.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
16.
P.
Gkeka
,
G.
Stoltz
,
A.
Barati Farimani
,
Z.
Belkacemi
,
M.
Ceriotti
,
J. D.
Chodera
,
A. R.
Dinner
,
A. L.
Ferguson
,
J.-B.
Maillet
,
H.
Minoux
,
C.
Peter
,
F.
Pietrucci
,
A.
Silveira
,
A.
Tkatchenko
,
Z.
Trstanova
,
R.
Wiewiora
, and
T.
Lelièvre
, “
Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials and biological systems
,”
J. Chem. Theory Comput.
16
,
4757
4775
(
2020
).
17.
O. T.
Unke
,
S.
Chmiela
,
H. E.
Sauceda
,
M.
Gastegger
,
I.
Poltavsky
,
K. T.
Schütt
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
Machine learning force fields
,”
Chem. Rev.
121
,
10142
(
2021
).
18.
V.
Botu
,
R.
Batra
,
J.
Chapman
, and
R.
Ramprasad
, “
Machine learning force fields: Construction, validation, and outlook
,”
J. Phys. Chem. C
121
,
511
522
(
2017
).
19.
Y.
Li
,
H.
Li
,
F. C.
Pickard
,
B.
Narayanan
,
F. G.
Sen
,
M. K. Y.
Chan
,
S. K. R. S.
Sankaranarayanan
,
B. R.
Brooks
, and
B.
Roux
, “
Machine learning force field parameters from ab initio data
,”
J. Chem. Theory Comput.
13
,
4492
4503
(
2017
).
20.
S.
Chmiela
,
H. E.
Sauceda
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Towards exact molecular dynamics simulations with machine-learned force fields
,”
Nat. Commun.
9
,
3887
(
2018
).
21.
V. L.
Deringer
,
M. A.
Caro
, and
G.
Csányi
, “
Machine learning interatomic potentials as emerging tools for materials science
,”
Adv. Mater.
31
,
1902765
(
2019
).
22.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
23.
H.
Eshet
,
R. Z.
Khaliullin
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
, “
Ab initio quality neural-network potential for sodium
,”
Phys. Rev. B
81
,
184107
(
2010
).
24.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
, “
High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
,”
Phys. Rev. B
83
,
153101
(
2011
).
25.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
26.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
, “
Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
,”
Phys. Rev. B
96
,
014112
(
2017
).
27.
A.
Sanchez-Gonzalez
,
J.
Godwin
,
T.
Pfaff
,
R.
Ying
,
J.
Leskovec
, and
P. W.
Battaglia
, “
Learning to simulate complex physics with graph networks
,” in
Proceedings of the 37th International Conference on Machine Learning, ICML, 13–18 July 2020, Virtual Event
(
PMLR
,
2020
), pp.
8459
8468
.
28.
V.
Bapst
,
T.
Keck
,
A.
Grabska-Barwińska
,
C.
Donner
,
E. D.
Cubuk
,
S. S.
Schoenholz
,
A.
Obika
,
A. W. R.
Nelson
,
T.
Back
,
D.
Hassabis
, and
P.
Kohli
, “
Unveiling the predictive power of static structure in glassy systems
,”
Nat. Phys.
16
,
448
454
(
2020
).
29.
P.
Battaglia
,
R.
Pascanu
,
M.
Lai
,
D.
Jimenez Rezende
, and
k.
kavukcuoglu
, “
Interaction networks for learning about objects, relations and physics
,” in
Advances in Neural Information Processing Systems
(
NeurIPS Proceedings
,
2016
).
30.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
, “
Machine learning unifies the modeling of materials and molecules
,”
Sci. Adv.
3
,
e1701816
(
2017
).
31.
C.
Chen
,
W.
Ye
,
Y.
Zuo
,
C.
Zheng
, and
S. P.
Ong
, “
Graph networks as a universal machine learning framework for molecules and crystals
,”
Chem. Mater.
31
,
3564
3572
(
2019
).
32.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
33.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
, “
FCHL revisited: Faster and more accurate quantum machine learning
,”
J. Chem. Phys.
152
,
044107
(
2020
).
34.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
35.
C.
Carbogno
,
J.
Behler
,
A.
Groß
, and
K.
Reuter
, “
Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111)
,”
Phys. Rev. Lett.
101
,
096104
(
2008
).
36.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
37.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
38.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
39.
D. K.
Duvenaud
,
D.
Maclaurin
,
J.
Iparraguirre
,
R.
Bombarell
,
T.
Hirzel
,
A.
Aspuru-Guzik
, and
R. P.
Adams
, “
Convolutional networks on graphs for learning molecular fingerprints
,” in
Advances in Neural Information Processing Systems
(
NeurIPS Proceedings
,
2015
).
40.
S.
Kearnes
,
K.
McCloskey
,
M.
Berndl
,
V.
Pande
, and
P.
Riley
, “
Molecular graph convolutions: Moving beyond fingerprints
,”
J. Comput.-Aided Mol. Des.
30
,
595
608
(
2016
).
41.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,”
Nat. Commun.
8
,
13890
(
2017
).
42.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
43.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet – A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
44.
N.
Lubbers
,
J. S.
Smith
, and
K.
Barros
, “
Hierarchical modeling of molecular energies using a deep neural network
,”
J. Chem. Phys.
148
,
241715
(
2018
).
45.
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
, “
Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
,”
J. Chem. Phys.
148
,
241730
(
2018
).
46.
T.
Pfaff
,
M.
Fortunato
,
A.
Sanchez-Gonzalez
, and
P.
Battaglia
, “
Learning mesh-based simulation with graph networks
,” in
International Conference on Learning Representations
,
2021
.
47.
J.
Shlomi
,
P.
Battaglia
, and
J.-R.
Vlimant
, “
Graph neural networks in particle physics
,”
Mach. Learn.: Sci. Technol.
2
,
021001
(
2021
).
48.
Z.
Li
and
A. B.
Farimani
, “
Graph neural network-accelerated Lagrangian fluid simulation
,”
Comput. Graphics
103
,
201
(
2022
).
49.
F.
Ogoke
,
K.
Meidani
,
A.
Hashemi
, and
A. B.
Farimani
, “
Graph convolutional neural networks for body force prediction
,” (
2020
); available at https://iopscience.iop.org/article/10.1088/2632-2153/ac1fc9.
50.
J.
Brandstetter
,
D. E.
Worrall
, and
M.
Welling
, “
Message passing neural PDE solvers
,” in
International Conference on Learning Representations
,
2022
.
51.
F.
de Avila Belbute-Peres
,
T. D.
Economon
, and
J. Z.
Kolter
, “
Combining differentiable PDE solvers and graph neural networks for fluid flow prediction
,” (
2020
); available at http://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html.
52.
T.
Xie
and
J. C.
Grossman
, “
Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
,”
Phys. Rev. Lett.
120
,
145301
(
2018
).
53.
M.
Karamad
,
R.
Magar
,
Y.
Shi
,
S.
Siahrostami
,
I. D.
Gates
, and
A.
Barati Farimani
, “
Orbital graph convolutional neural network for material property prediction
,”
Phys. Rev. Mater.
4
,
093801
(
2020
).
54.
Y.
Wang
,
J.
Wang
,
Z.
Cao
, and
A. B.
Farimani
, “
MolCLR: Molecular contrastive learning of representations via graph neural networks
,” (
2021
); https://www.nature.com/articles/s42256-022-00447-x.
55.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in
Proceedings of the 34th International Conference on Machine Learning
(
PMLR
,
2017
), pp.
1263
1272
.
56.
J.
Klicpera
,
J.
Groß
, and
S.
Günnemann
, “
Directional message passing for molecular graphs
,” in
International Conference on Learning Representations
,
2020
.
57.
J.
Klicpera
,
S.
Giri
,
J. T.
Margraf
, and
S.
Gunnemann
, “
Fast and uncertainty-aware directional message passing for non-equilibrium molecules
,” arXiv:abs/2011.14115 (
2020
).
58.
S. S.
Schoenholz
and
E. D.
Cubuk
, “
JAX M.D: A framework for differentiable physics
,” in
Advances in Neural Information Processing Systems
(
NeurIPS Proceedings
,
2020
).
59.
S.
Doerr
,
M.
Majewski
,
A.
Pérez
,
A.
Krämer
,
C.
Clementi
,
F.
Noe
,
T.
Giorgino
, and
G.
De Fabritiis
, “
TorchMD: A deep learning framework for molecular simulations
,”
J. Chem. Theory Comput.
17
,
2355
2363
(
2021
).
60.
K. T.
Schütt
,
P.
Kessel
,
M.
Gastegger
,
K. A.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNetPack: A deep learning toolbox for atomistic systems
,”
J. Chem. Theory Comput.
15
,
448
455
(
2019
).
61.
W.
Wang
,
S.
Axelrod
, and
R.
Gómez-Bombarelli
, “
Differentiable molecular simulations for control and learning
,” in
ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations
,
2020
.
62.
A.
Pukrittayakamee
,
M.
Malshe
,
M.
Hagan
,
L. M.
Raff
,
R.
Narulkar
,
S.
Bukkapatnum
, and
R.
Komanduri
, “
Simultaneous fitting of a potential-energy surface and its corresponding force fields using feedforward neural networks
,”
J. Chem. Phys.
130
,
134101
(
2009
).
63.
L.
Chanussot
,
A.
Das
,
S.
Goyal
,
T.
Lavril
,
M.
Shuaibi
,
M.
Riviere
,
K.
Tran
,
J.
Heras-Domingo
,
C.
Ho
,
W.
Hu
,
A.
Palizhati
,
A.
Sriram
,
B.
Wood
,
J.
Yoon
,
D.
Parikh
,
C. L.
Zitnick
, and
Z.
Ulissi
, “
Open catalyst 2020 (OC20) dataset and community challenges
,”
ACS Catal.
11
,
6059
6072
(
2021
).
64.
T.
Morawietz
and
J.
Behler
, “
A density-functional theory-based neural network potential for water clusters including van der Waals corrections
,”
J. Phys. Chem. A
117
,
7356
7366
(
2013
).
65.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
, “
How van der Waals interactions determine the unique properties of water
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
8373
(
2016
).
66.
B.
Cheng
,
E. A.
Engel
,
J.
Behler
,
C.
Dellago
, and
M.
Ceriotti
, “
Ab initio thermodynamics of liquid and solid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
1110
1115
(
2019
).
67.
J. L.
Ba
,
J. R.
Kiros
, and
G. E.
Hinton
, “
Layer normalization
,” arxiv.org/abs/1607.06450 (
2016
).
68.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” (
2015
); available at https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.
69.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, in
Advances in Neural Information Processing Systems
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché-Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
,
2019
), Vol. 32, pp.
8024
8035
.
70.
M.
Wang
,
D.
Zheng
,
Z.
Ye
,
Q.
Gan
,
M.
Li
,
X.
Song
,
J.
Zhou
,
C.
Ma
,
L.
Yu
,
Y.
Gai
,
T.
Xiao
,
T.
He
,
G.
Karypis
,
J.
Li
, and
Z.
Zhang
, “
Deep graph library: A graph-centric, highly-performant package for graph neural networks
,” arXiv:1909.01315 (
2019
),
71.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
72.
J. E.
Lennard-Jones
, “
Cohesion
,”
Proc. Phys. Soc.
43
,
461
482
(
1931
).
73.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
74.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
, “
Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew
,”
J. Chem. Phys.
120
,
9665
9678
(
2004
).
75.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
76.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
77.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
, “
Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
,”
Phys. Rev. B
59
,
7413
7421
(
1999
).
78.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
79.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arxiv.org/abs/1412.6980 (
2015
).
80.
D.
Hendrycks
and
K.
Gimpel
, “
Gaussian error linear units (GELUs)
,” arxiv.org/abs/1606.08415 (
2020
).
81.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
82.
S.
Kondati Natarajan
,
T.
Morawietz
, and
J.
Behler
, “
Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials
,”
Phys. Chem. Chem. Phys.
17
,
8356
8371
(
2015
).
83.
T.
Morawietz
,
V.
Sharma
, and
J.
Behler
, “
A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges
,”
J. Chem. Phys.
136
,
064103
(
2012
).
84.
A.
Reinhardt
and
B.
Cheng
, “
Quantum-mechanical exploration of the phase diagram of water
,”
Nat. Commun.
12
,
588
(
2021
).
85.
B.
Cheng
, “
Neural network potential for bulk ice and liquid water based on the revPBE0+D3 DFT calculations
,” (
2019
), https://github.com/BingqingCheng/neural-network-potential-for-water-revPBE0-D3.
86.
W.
Chen
,
F.
Ambrosio
,
G.
Miceli
, and
A.
Pasquarello
, “
Ab initio electronic structure of liquid water
,”
Phys. Rev. Lett.
117
,
186401
(
2016
).
87.
L. B.
Skinner
,
C. J.
Benmore
,
J. C.
Neuefeind
, and
J. B.
Parise
, “
The structure of water around the compressibility minimum
,”
J. Chem. Phys.
141
,
214507
(
2014
).
88.
A. K.
Soper
, “
The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa
,”
Chem. Phys.
258
,
121
137
(
2000
).
89.
B.
Leimkuhler
and
C.
Matthews
, “
Robust and efficient configurational molecular sampling via Langevin dynamics
,”
J. Chem. Phys.
138
,
174102
(
2013
).
90.
G.
Zhao
,
J. R.
Perilla
,
E. L.
Yufenyuy
,
X.
Meng
,
B.
Chen
,
J.
Ning
,
J.
Ahn
,
A. M.
Gronenborn
,
K.
Schulten
,
C.
Aiken
, and
P.
Zhang
, “
Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics
,”
Nature
497
,
643
646
(
2013
).

Supplementary Material

You do not currently have access to this content.