The growth of viscoelastic curved materials, inspired by biological systems, may give rise to various complex structures. One of the simplest ways to control the pattern formation is to vary the orientation of the reaction vessel while keeping all other experimental conditions constant. Here, we report the self-organization of soft chitosan tubes by injecting acidic chitosan sol into a pool of sodium hydroxide solution, where the adhesive force between the gel and container keeps the tubules on the bottom of the reactor. The horizontal growth of the tubular structure undergoes spontaneous symmetry breaking, where instabilities develop on the surface of the chitosan tubules. Transformation of folds into wrinkles and finally to a smooth tube takes place by varying the orientation of the container. In addition to characterizing the evolving structures, we have also shown that the linear growth rate of the tube scales with the tilt angle of the container from the horizontal.

1.
Z. L.
Wu
and
J. P.
Gong
, “
Hydrogels with self-assembling ordered structures and their functions
,”
NPG Asia Mater.
3
,
57
64
(
2011
).
2.
L. M.
Barge
,
S. S. S.
Cardoso
,
J. H. E.
Cartwright
,
G. J. T.
Cooper
,
L.
Cronin
,
A.
De Wit
,
I. J.
Doloboff
,
B.
Escribano
,
R. E.
Goldstein
,
F.
Haudin
,
D. E. H.
Jones
,
A. L.
Mackay
,
J.
Maselko
,
J. J.
Pagano
,
J.
Pantaleone
,
M. J.
Russell
,
C. I.
Sainz-Díaz
,
O.
Steinbock
,
D. A.
Stone
,
Y.
Tanimoto
, and
N. L.
Thomas
, “
From chemical gardens to chemobrionics
,”
Chem. Rev.
115
,
8652
8703
(
2015
).
3.
E.
Nakouzi
and
O.
Steinbock
, “
Self-organization in precipitation reactions far from the equilibrium
,”
Sci. Adv.
2
,
e1601144
(
2016
).
4.
S. S. S.
Cardoso
,
J. H. E.
Cartwright
,
J.
Čejková
,
L.
Cronin
,
A.
De Wit
,
S.
Giannerini
,
D.
Horváth
,
A.
Rodrigues
,
M. J.
Russell
,
C. I.
Sainz-Díaz
, and
Á.
Tóth
, “
Chemobrionics: From self-assembled material architectures to the origin of life
,”
Artif. Life
26
,
315
326
(
2020
).
5.
D.
Takács
,
G.
Schuszter
,
D.
Sebők
,
Á.
Kukovecz
,
D.
Horváth
, and
Á.
Tóth
, “
Magnetic-field-manipulated growth of flow-driven precipitate membrane tubes
,”
Chem. Eur. J.
25
,
14826
14833
(
2019
).
6.
S.
Thouvenel-Romans
and
O.
Steinbock
, “
Oscillatory growth of silica tubes in chemical gardens
,”
J. Am. Chem. Soc.
125
,
4338
4341
(
2003
).
7.
V.
Kaminker
,
J.
Maselko
, and
J.
Pantaleone
, “
The dynamics of open precipitation tubes
,”
J. Chem. Phys.
140
,
244901
(
2014
).
8.
B. C.
Batista
and
O.
Steinbock
, “
Chemical gardens without silica: The formation of pure metal hydroxide tubes
,”
Chem. Commun.
51
,
12962
12965
(
2015
).
9.
E.
Rauscher
,
G.
Schuszter
,
B.
Bohner
,
Á.
Tóth
, and
D.
Horváth
, “
Osmotic contribution to the flow-driven tube formation of copper–phosphate and copper–silicate chemical gardens
,”
Phys. Chem. Chem. Phys.
20
,
5766
5770
(
2018
).
10.
F.
Haudin
,
J. H. E.
Cartwright
,
F.
Brau
, and
A.
De Wit
, “
Spiral precipitation patterns in confined chemical gardens
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
17363
17367
(
2014
).
11.
F.
Brau
,
F.
Haudin
,
S.
Thouvenel-Romans
,
A.
De Wit
,
O.
Steinbock
,
S. S. S.
Cardoso
, and
J. H. E.
Cartwright
, “
Filament dynamics in confined chemical gardens and in filiform corrosion
,”
Phys. Chem. Chem. Phys.
20
,
784
793
(
2018
).
12.
G.
Pampalakis
, “
The generation of an organic inverted chemical garden
,”
Chem. Eur. J.
22
,
6779
6782
(
2016
).
13.
P.
Kumar
,
D.
Horváth
, and
Á.
Tóth
, “
Bio-inspired flow-driven chitosan chemical gardens
,”
Soft Matter
16
,
8325
8329
(
2020
).
14.
A.
Fogde
,
S.
Qudsia
,
T.-A.
Le
,
T.
Sandberg
, and
T.-P.
Huynh
, “
(calcium-phosphate)/carrageenan gardens grown from the gel/liquid interface
,”
ChemSystemsChem
3
,
e2000064
(
2021
).
15.
E. A. B.
Hughes
,
T. E.
Robinson
,
R. J. A.
Moakes
,
M.
Chipara
, and
L. M.
Grover
, “
Controlled self-assembly of chemical gardens enables fabrication of heterogeneous chemobrionic materials
,”
Commun. Chem.
4
,
145
(
2021
).
16.
P.
Kumar
,
D.
Sebők
,
Á.
Kukovecz
,
D.
Horváth
, and
Á.
Tóth
, “
Hierarchical self-assembly of metal-ion-modulated chitosan tubules
,”
Langmuir
37
,
12690
12696
(
2021
).
17.
M.
Guvendiren
,
S.
Yang
, and
J. A.
Burdick
, “
Swelling-induced surface patterns in hydrogels with gradient crosslinking density
,”
Adv. Funct. Mater.
19
,
3038
3045
(
2009
).
18.
T.
Tanaka
,
S.-T.
Sun
,
Y.
Hirokawa
,
S.
Katayama
,
J.
Kucera
,
Y.
Hirose
, and
T.
Amiya
, “
Mechanical instability of gels at the phase transition
,”
Nature
325
,
796
798
(
1987
).
19.
Y.
Tokudome
,
H.
Kuniwaki
,
K.
Suzuki
,
D.
Carboni
,
G.
Poologasundarampillai
, and
M.
Takahashi
, “
Thermoresponsive wrinkles on hydrogels for soft actuators
,”
Adv. Mater. Interfaces
3
,
1500802
(
2016
).
20.
J.
Kim
,
J.
Yoon
, and
R. C.
Hayward
, “
Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels
,”
Nat. Mater.
9
,
159
164
(
2010
).
21.
W.
Toh
,
Z.
Ding
,
T. Y.
Ng
, and
Z.
Liu
, “
Light intensity controlled wrinkling patterns in photo-thermal sensitive hydrogels
,”
Coupled Syst. Mech.
5
,
315
327
(
2016
).
22.
D.
Chandra
and
A. J.
Crosby
, “
Self-wrinkling of UV-cured polymer films
,”
Adv. Mater.
23
,
3441
3445
(
2011
).
23.
X.
Cheng
and
Y.
Zhang
, “
Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches
,”
Adv. Mater.
31
,
1901895
(
2019
).
24.
E.
Kotopoulou
,
M.
Lopez‐Haro
,
J. J.
Calvino Gamez
, and
J. M.
García‐Ruiz
, “
Nanoscale anatomy of iron-silica self-organized membranes: Implications for prebiotic chemistry
,”
Angew. Chem., Int. Ed.
60
,
1396
1402
(
2021
).
25.
R.
Huang
and
S. H.
Im
, “
Dynamics of wrinkle growth and coarsening in stressed thin films
,”
Phys. Rev. E
74
,
026214
(
2006
).
26.
E.
Cerda
and
L.
Mahadevan
, “
Geometry and physics of wrinkling
,”
Phys. Rev. Lett.
90
,
074302
(
2003
).
27.
L.
Pocivavsek
,
R.
Dellsy
,
A.
Kern
,
S.
Johnson
,
B.
Lin
,
K. Y. C.
Lee
, and
E.
Cerda
, “
Stress and fold localization in thin elastic membranes
,”
Science
320
,
912
916
(
2008
).
28.
F.
Brau
,
P.
Damman
,
H.
Diamant
, and
T. A.
Witten
, “
Wrinkle to fold transition: Influence of the substrate response
,”
Soft Matter
9
,
8177
8186
(
2013
).
29.
D. P.
Holmes
and
A. J.
Crosby
, “
Draping films: A wrinkle to fold transition
,”
Phys. Rev. Lett.
105
,
038303
(
2010
).
30.
P.
Ciarletta
, “
Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis
,”
J. Mech. Phys. Solids
73
,
118
133
(
2014
).
31.
Y.
Ebata
,
A. B.
Croll
, and
A. J.
Crosby
, “
Wrinkling and strain localizations in polymer thin films
,”
Soft Matter
8
,
9086
9091
(
2012
).
32.
J.
Yin
,
Z.
Cao
,
C.
Li
,
I.
Sheinman
, and
X.
Chen
, “
Stress-driven buckling patterns in spheroidal core/shell structures
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
19132
19135
(
2008
).
33.
K.
Efimenko
,
M.
Rackaitis
,
E.
Manias
,
A.
Vaziri
,
L.
Mahadevan
, and
J.
Genzer
, “
Nested self-similar wrinkling patterns in skins
,”
Nat. Mater.
4
,
293
297
(
2005
).
34.
V.
Fernández
,
C.
Llinares‐Benadero
, and
V.
Borrell
, “
Cerebral cortex expansion and folding: What have we learned?
,”
EMBO J.
35
,
1021
1044
(
2016
).
35.
K. D.
Walton
,
Å.
Kolterud
,
M. J.
Czerwinski
,
M. J.
Bell
,
A.
Prakash
,
J.
Kushwaha
,
A. S.
Grosse
,
S.
Schnell
, and
D. L.
Gumucio
, “
Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
15817
15822
(
2012
).
36.
Y.
Tan
,
B.
Hu
,
J.
Song
,
Z.
Chu
, and
W.
Wu
, “
Bioinspired multiscale wrinkling patterns on curved substrates: An overview
,”
Nano-Micro Lett.
12
,
1
42
(
2020
).
37.
P.
Ciarletta
,
V.
Balbi
, and
E.
Kuhl
, “
Pattern selection in growing tubular tissues
,”
Phys. Rev. Lett.
113
,
248101
(
2014
).
38.
P.
Kumar
,
C.
Hajdu
,
Á.
Tóth
, and
D.
Horváth
, “
Flow-driven surface instabilities of tubular chitosan hydrogel
,”
ChemPhysChem
22
,
488
(
2021
).

Supplementary Material

You do not currently have access to this content.