Understanding and controlling the energy transfer between silicon nanocrystals is of significant importance for the design of efficient optoelectronic devices. However, previous studies on silicon nanocrystal energy transfer were limited because of the strict requirements to precisely control the inter-dot distance and to perform all measurements in air-free environments to preclude the effect of ambient oxygen. Here, we systematically investigate the distance-dependent resonance energy transfer in alkyl-terminated silicon nanocrystals for the first time. Silicon nanocrystal solids with inter-dot distances varying from 3 to 5 nm are fabricated by varying the length and surface coverage of alkyl ligands in solution-phase and gas-phase functionalized silicon nanocrystals. The inter-dot energy transfer rates are extracted from steady-state and time-resolved photoluminescence measurements, enabling a direct comparison to theoretical predictions. Our results reveal that the distance-dependent energy transfer rates in Si NCs decay faster than predicted by the Förster mechanism, suggesting higher-order multipole interactions.

1.
C. R.
Kagan
,
C. B.
Murray
,
M.
Nirmal
, and
M. G.
Bawendi
, “
Electronic energy transfer in CdSe quantum dot solids
,”
Phys. Rev. Lett.
76
,
1517
(
1996
).
2.
S. A.
Crooker
,
J. A.
Hollingsworth
,
S.
Tretiak
, and
V. I.
Klimov
, “
Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials
,”
Phys. Rev. Lett.
89
,
186802
(
2002
).
3.
A. L.
Rogach
,
T. A.
Klar
,
J. M.
Lupton
,
A.
Meijerink
, and
J.
Feldmann
, “
Energy transfer with semiconductor nanocrystals
,”
J. Mater. Chem.
19
,
1208
1221
(
2009
).
4.
M.
Lunz
,
A. L.
Bradley
,
W.-Y.
Chen
, and
Y. K.
Gun'ko
, “
Two-dimensional forster resonant energy transfer in a mixed quantum dot monolayer: Experiment and theory
,”
J. Phys. Chem. C
113
,
3084
3088
(
2009
).
5.
M.
Graetzel
,
R. A. J.
Janssen
,
D. B.
Mitzi
, and
E. H.
Sargent
, “
Materials interface engineering for solution-processed photovoltaics
,”
Nature
488
,
304
312
(
2012
).
6.
M.
Dutta
,
L.
Thirugnanam
,
P. V.
Trinh
, and
N.
Fukata
, “
High efficiency hybrid solar cells using nanocrystalline Si quantum dots and Si nanowires
,”
ACS Nano
9
,
6891
6899
(
2015
).
7.
T.
Kim
,
S.
Lim
,
S.
Yun
,
S.
Jeong
,
T.
Park
, and
J.
Choi
, “
Design strategy of quantum dot thin-film solar cells
,”
Small
16
,
2002460
(
2020
).
8.
Y.
Shirasaki
,
G. J.
Supran
,
M. G.
Bawendi
, and
V.
Bulović
, “
Emergence of colloidal quantum-dot light-emitting technologies
,”
Nat. Photonics
7
,
13
(
2013
).
9.
F.
Priolo
,
T.
Gregorkiewicz
,
M.
Galli
, and
T. F.
Krauss
, “
Silicon nanostructures for photonics and photovoltaics
,”
Nat. Nanotechnol.
9
,
19
32
(
2014
).
10.
T.
Förster
, “
Experimentelle und theoretische untersuchung des zwischenmolekularen übergangs von elektronenanregungsenergie
,”
Z. Naturforsch., A
4
,
321
327
(
1949
).
11.
M.
Achermann
,
M. A.
Petruska
,
S. A.
Crooker
, and
V. I.
Klimov
, “
Picosecond energy transfer in quantum dot Langmuir-Blodgett nanoassemblies
,”
J. Phys. Chem. B
107
,
13782
13787
(
2003
).
12.
A. J.
Mork
,
M. C.
Weidman
,
F.
Prins
, and
W. A.
Tisdale
, “
Magnitude of the Förster radius in colloidal quantum dot solids
,”
J. Phys. Chem. C
118
,
13920
13928
(
2014
).
13.
K. V.
Reich
and
B. I.
Shklovskii
, “
Exciton transfer in array of epitaxially connected nanocrystals
,”
ACS Nano
10
,
10267
10274
(
2016
).
14.
Z.
Lingley
,
S.
Lu
, and
A.
Madhukar
, “
A high quantum efficiency preserving approach to ligand exchange on lead sulfide quantum dots and interdot resonant energy transfer
,”
Nano Lett.
11
,
2887
2891
(
2011
).
15.
M. S.
Kodaimati
,
C.
Wang
,
C.
Chapman
,
G. C.
Schatz
, and
E. A.
Weiss
, “
Distance-dependence of interparticle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots
,”
ACS Nano
11
,
5041
5050
(
2017
).
16.
D.
Kim
,
S.
Okahara
,
M.
Nakayama
, and
Y.
Shim
, “
Experimental verification of Förster energy transfer between semiconductor quantum dots
,”
Phys. Rev. B
78
,
153301
(
2008
).
17.
R.
Limpens
,
A.
Lesage
,
P.
Stallinga
,
A. N.
Poddubny
,
M.
Fujii
, and
T.
Gregorkiewicz
, “
Resonant energy transfer in Si nanocrystal solids
,”
J. Phys. Chem. C
119
,
19565
19570
(
2015
).
18.
K.
Furuta
,
M.
Fujii
,
H.
Sugimoto
, and
K.
Imakita
, “
Energy transfer in silicon nanocrystal solids made from all-inorganic colloidal silicon nanocrystals
,”
J. Phys. Chem. Lett.
6
,
2761
2766
(
2015
).
19.
H.
Sugimoto
,
K.
Furuta
, and
M.
Fujii
, “
Controlling energy transfer in silicon quantum dot assemblies made from all-inorganic colloidal silicon quantum dots
,”
J. Phys. Chem. C
120
,
24469
24475
(
2016
).
20.
L.
Pavesi
, “
Influence of dispersive exciton motion on the recombination dynamics in porous silicon
,”
J. Appl. Phys.
80
,
216
225
(
1996
).
21.
J.
Linnros
,
N.
Lalic
,
A.
Galeckas
, and
V.
Grivickas
, “
Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2
,”
J. Appl. Phys.
86
,
6128
6134
(
1999
).
22.
L. A.
DeLouise
and
H.
Ouyang
, “
Photoinduced fluorescence enhancement and energy transfer effects of quantum dots porous silicon
,”
Phys. Status Solidi B
6
,
1729
1735
(
2009
).
23.
D.
Kovalev
,
E.
Gross
,
N.
Künzner
,
F.
Koch
,
V. Y.
Timoshenko
, and
M.
Fujii
, “
Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules
,”
Phys. Rev. Lett.
89
,
137401
(
2002
).
24.
M.
Dovrat
,
Y.
Goshen
,
J.
Jedrzejewski
,
I.
Balberg
, and
A.
Sa’ar
, “
Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy
,”
Phys. Rev. B
69
,
155311
(
2004
).
25.
R.
Krishnan
,
Q.
Xie
,
J.
Kulik
,
X. D.
Wang
,
S.
Lu
,
M.
Molinari
,
Y.
Gao
,
T. D.
Krauss
, and
P. M.
Fauchet
, “
Effect of oxidation on charge localization and transport in a single layer of silicon nanocrystals
,”
J. Appl. Phys.
96
,
654
660
(
2004
).
26.
J. B.
Hoffman
,
R.
Alam
, and
P. V.
Kamat
, “
Why surface chemistry matters for QD–QD resonance energy transfer
,”
ACS Energy Lett.
2
,
391
396
(
2017
).
27.
N.
Kholmicheva
,
P.
Moroz
,
H.
Eckard
,
G.
Jensen
, and
M.
Zamkov
, “
Energy transfer in quantum dot solids
,”
ACS Energy Lett.
2
,
154
160
(
2017
).
28.
G.
Allan
and
C.
Delerue
, “
Energy transfer between semiconductor nanocrystals: Validity of Förster’s theory
,”
Phys. Rev. B
75
,
195311
(
2007
).
29.
Z.
Lin
,
H.
Li
,
A.
Franceschetti
, and
M. T.
Lusk
, “
Efficient exciton transport between strongly quantum-confined silicon quantum dots
,”
ACS Nano
6
,
4029
4038
(
2012
).
30.
Z.
Li
and
U. R.
Kortshagen
, “
Aerosol-phase synthesis and processing of luminescent silicon nanocrystals
,”
Chem. Mater.
31
,
8451
8458
(
2019
).
31.
D.
Jurbergs
,
E.
Rogojina
,
L.
Mangolini
, and
U.
Kortshagen
, “
Silicon nanocrystals with ensemble quantum yields exceeding 60%
,”
Appl. Phys. Lett.
88
,
233116
(
2006
).
32.
R. J.
Anthony
,
K.-Y.
Cheng
,
Z. C.
Holman
,
R. J.
Holmes
, and
U. R.
Kortshagen
, “
An all-gas-phase approach for the fabrication of silicon nanocrystal light-emitting devices
,”
Nano Lett.
12
,
2822
2825
(
2012
).
33.
T. K.
Purkait
,
M.
Iqbal
,
M. H.
Wahl
,
K.
Gottschling
,
C. M.
Gonzalez
,
M. A.
Islam
, and
J. G. C.
Veinot
, “
Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces
,”
J. Am. Chem. Soc.
136
,
17914
17917
(
2014
).
34.
Z.
Yang
,
C. M.
Gonzalez
,
T. K.
Purkait
,
M.
Iqbal
,
A.
Meldrum
, and
J. G. C.
Veinot
, “
Radical initiated hydrosilylation on silicon nanocrystal surfaces: An evaluation of functional group tolerance and mechanistic study
,”
Langmuir
31
,
10540
10548
(
2015
).
35.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
36.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
37.
F. A.
Soria
,
W.
Zhang
,
P. A.
Paredes-Olivera
,
A. C. T.
Van Duin
, and
E. M.
Patrito
, “
Si/C/H ReaxFF reactive potential for silicon surfaces grafted with organic molecules
,”
J. Phys. Chem. C
122
,
23515
23527
(
2018
).
38.
S. K. E.
Hill
,
R.
Connell
,
C.
Peterson
,
J.
Hollinger
,
M. A.
Hillmyer
,
U.
Kortshagen
, and
V. E.
Ferry
, “
Silicon quantum dot–poly (methyl methacrylate) nanocomposites with reduced light scattering for luminescent solar concentrators
,”
ACS Photonics
6
,
170
180
(
2018
).
39.
W. N.
Wenger
,
F. S.
Bates
, and
E. S.
Aydil
, “
Functionalization of cadmium selenide quantum dots with poly (ethylene glycol): Ligand exchange, surface coverage, and dispersion stability
,”
Langmuir
33
,
8239
8245
(
2017
).
40.
C.
Meier
,
A.
Gondorf
,
S.
Lüttjohann
,
A.
Lorke
, and
H.
Wiggers
, “
Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap
,”
J. Appl. Phys.
101
,
103112
(
2007
).
41.
C.
Delerue
,
G.
Allan
, and
M.
Lannoo
, “
Theoretical aspects of the luminescence of porous silicon
,”
Phys. Rev. B
48
,
11024
(
1993
).
42.
A.
van Driel
,
I.
Nikolaev
,
P.
Vergeer
,
P.
Lodahl
,
D.
Vanmaekelbergh
, and
W. L.
Vos
, “
Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models
,”
Phys. Rev. B
75
,
035329
(
2007
).
43.
S. F.
Wuister
,
C.
de Mello Donegá
, and
A.
Meijerink
, “
Local-field effects on the spontaneous emission rate of CdTe and CdSe quantum dots in dielectric media
,”
J. Chem. Phys.
121
,
4310
4315
(
2004
).
44.
C.-K.
Duan
,
M. F.
Reid
, and
Z.
Wang
, “
Local field effects on the radiative lifetime of emitters in surrounding media: Virtual-or real-cavity model?
,”
Phys. Lett. A
343
,
474
480
(
2005
).
45.
A.
Aubret
,
A.
Pillonnet
,
J.
Houel
,
C.
Dujardin
, and
F.
Kulzer
, “
CdSe/ZnS quantum dots as sensors for the local refractive index
,”
Nanoscale
8
,
2317
2325
(
2016
).
46.
N.
Geva
,
J. J.
Shepherd
,
L.
Nienhaus
,
M. G.
Bawendi
, and
T.
Van Voorhis
, “
Morphology of passivating organic ligands around a nanocrystal
,”
J. Phys. Chem. C
122
,
26267
26274
(
2018
).
47.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
11236
(
1996
).
48.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
,
024503
(
2006
).
49.
M.
Tagliazucchi
,
D. B.
Tice
,
C. M.
Sweeney
,
A. J.
Morris-Cohen
, and
E. A.
Weiss
, “
Ligand-controlled rates of photoinduced electron transfer in hybrid CdSe nanocrystal/poly (viologen) films
,”
ACS Nano
5
,
9907
9917
(
2011
).
50.
B. L.
Greenberg
,
Z. L.
Robinson
,
Y.
Ayino
,
J. T.
Held
,
T. A.
Peterson
,
K. A.
Mkhoyan
,
V. S.
Pribiag
,
E. S.
Aydil
, and
U. R.
Kortshagen
, “
Metal-insulator transition in a semiconductor nanocrystal network
,”
Sci. Adv.
5
,
eaaw1462
(
2019
).

Supplementary Material

You do not currently have access to this content.