To reach a deeper understanding of the charge storage mechanisms of electrode materials is one of the challenges toward improving their energy storage performance. Herein, we investigate the interfacial ion exchange of a composite electrode made of carbon nanotube/poly(ortho-phenylenediamine) (CNT/PoPD) in a 1M NaCl aqueous electrolyte via advanced electrogravimetric analyses based on electrochemical quartz crystal microbalance (EQCM). Classical EQCM at different scan rates of the potential revealed the complex electrogravimetric behavior likely due to multi-species participation at different temporal scales. Thereafter, in order to better understand the behavior of each species (ions, counter ions, and co-ions) in the charge compensation mechanism, the electrogravimetric impedance spectroscopy analysis (also called ac-electrogravimetry) was pursued. Ac-electrogravimetry revealed the role of each species where Na+ cations and Cl anions as well as protons participate in the charge compensation mechanism of the CNT/PoPD composite with different kinetics and proportions. The water molecules with opposite flux direction with the cations are also detected, suggesting their exclusion during cationic species transfer. Having analyzed ac-electrogravimetry responses in depth, the synergistic interaction between the CNT and PoPD is highlighted, revealing the improved accessibility of species to new sites in the composite.

1.
W.-J.
Song
,
S.
Lee
,
G.
Song
,
H. B.
Son
,
D.-Y.
Han
,
I.
Jeong
,
Y.
Bang
, and
S.
Park
, “
Recent progress in aqueous based flexible energy storage devices
,”
Energy Storage Mater
30
,
260
286
(
2020
).
2.
X.
Li
,
X.
Chen
,
Z.
Jin
,
P.
Li
, and
D.
Xiao
, “
Recent progress in conductive polymers for advanced fiber-shaped electrochemical energy storage devices
,”
Mater. Chem. Front.
5
(
3
),
1140
1163
(
2021
).
3.
F.
Wu
,
M.
Liu
,
Y.
Li
,
X.
Feng
,
K.
Zhang
,
Y.
Bai
,
X.
Wang
, and
C.
Wu
, “
High-mass-loading electrodes for advanced secondary batteries and supercapacitors
,”
Electrochem. Energy Rev.
4
(
2
),
382
446
(
2021
).
4.
P.
Simon
and
Y.
Gogotsi
, “
Perspectives for electrochemical capacitors and related devices
,”
Nat. Mater.
19
(
11
),
1151
1163
(
2020
).
5.
H.
Shao
,
Y.-C.
Wu
,
Z.
Lin
,
P.-L.
Taberna
, and
P.
Simon
, “
Nanoporous carbon for electrochemical capacitive energy storage
,”
Chem. Soc. Rev.
49
(
10
),
3005
3039
(
2020
).
6.
W.
Ma
,
W.
Li
,
M.
Li
,
Q.
Mao
,
Z.
Pan
,
J.
Hu
,
X.
Li
,
M.
Zhu
, and
Y.
Zhang
, “
Unzipped carbon nanotube/graphene hybrid fiber with less ‘dead volume’ for ultrahigh volumetric energy density supercapacitors
,”
Adv. Funct. Mater.
31
(
19
),
2100195
(
2021
).
7.
S.
Zhu
,
J.
Ni
, and
Y.
Li
, “
Carbon nanotube-based electrodes for flexible supercapacitors
,”
Nano Res.
13
(
7
),
1825
1841
(
2020
).
8.
Y. M.
Liu
,
C.
Merlet
, and
B.
Smit
, “
Carbons with regular pore geometry yield fundamental insights into supercapacitor charge storage
,”
ACS Cent. Sci.
5
(
11
),
1813
1823
(
2019
).
9.
E.
Raymundo-Piñero
,
K.
Kierzek
,
J.
Machnikowski
, and
F.
Béguin
, “
Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes
,”
Carbon
44
(
12
),
2498
2507
(
2006
).
10.
J.
Chmiola
,
G.
Yushin
,
Y.
Gogotsi
,
C.
Portet
,
P.
Simon
, and
P. L.
Taberna
, “
Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer
,”
Science
313
(
5794
),
1760
1763
(
2006
).
11.
J.
Ye
,
Y.-C.
Wu
,
K.
Xu
,
K.
Ni
,
N.
Shu
,
P.-L.
Taberna
,
Y.
Zhu
, and
P.
Simon
, “
Charge storage mechanisms of single-layer graphene in ionic liquid
,”
J. Am. Chem. Soc.
141
(
42
),
16559
16563
(
2019
).
12.
J. N.
Barisci
,
G. G.
Wallace
, and
R. H.
Baughman
, “
Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions
,”
Electrochim. Acta
46
(
4
),
509
517
(
2000
).
13.
F.
Escobar-Teran
,
A.
Arnau
,
J. V.
Garcia
,
Y.
Jiménez
,
H.
Perrot
, and
O.
Sel
, “
Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry
,”
Electrochem. Commun.
70
,
73
77
(
2016
).
14.
S.
Bourkane
,
C.
Gabrielli
, and
M.
Keddam
, “
Kinetic study of electrode processes by ac quartz electrogravimetry
,”
J. Electroanal. Chem. Interfacial Electrochem.
256
(
2
),
471
475
(
1988
).
15.
P.
Lemaire
,
O.
Sel
,
D.
Alves Dalla Corte
,
A.
Iadecola
,
H.
Perrot
, and
J.-M.
Tarascon
, “
Elucidating the origin of the electrochemical capacity in a proton-based battery HxIrO4 via advanced electrogravimetry
,”
ACS Appl. Mater. Interfaces
12
,
4510
(
2020
).
16.
C.
Gabrielli
,
J. J.
García-Jareño
,
M.
Keddam
,
H.
Perrot
, and
F.
Vicente
, “
Ac-electrogravimetry study of electroactive thin films. I. Application to prussian blue
,”
J. Phys. Chem. B
106
(
12
),
3182
3191
(
2002
).
17.
C.
Gabrielli
,
J. J.
Garcia-Jareño
,
M.
Keddam
,
H.
Perrot
, and
F.
Vicente
, “
Ac-electrogravimetry study of electroactive thin films. II. Application to polypyrrole
,”
J. Phys. Chem. B
106
(
12
),
3192
3201
(
2002
).
18.
R.
Torres
,
Y.
Jimenez
,
A.
Arnau
,
C.
Gabrielli
,
S.
Joiret
,
H.
Perrot
,
T. K. L.
To
, and
X.
Wang
, “
High frequency mass transfer responses with polyaniline modified electrodes by using new ac-electrogravimetry device
,”
Electrochim. Acta
55
(
21
),
6308
6312
(
2010
).
19.
W.
Gao
,
H.
Perrot
, and
O.
Sel
, “
Tracking the interfacial charge transfer behavior of hydrothermally synthesized ZnO nanostructures via complementary electrogravimetric methods
,”
Phys. Chem. Chem. Phys.
20
(
42
),
27140
27148
(
2018
).
20.
F.
Razzaghi
,
C.
Debiemme-Chouvy
,
F.
Pillier
,
H.
Perrot
, and
O.
Sel
, “
Ion intercalation dynamics of electrosynthesized mesoporous WO3 thin films studied by multi-scale coupled electrogravimetric methods
,”
Phys. Chem. Chem. Phys.
17
(
22
),
14773
14787
(
2015
).
21.
C. R.
Arias
,
C.
Debiemme-Chouvy
,
C.
Gabrielli
,
C.
Laberty-Robert
,
A.
Pailleret
,
H.
Perrot
, and
O.
Sel
, “
New insights into pseudocapacitive charge-storage mechanisms in Li-birnessite type MnO2 monitored by fast quartz crystal microbalance methods
,”
J. Phys. Chem. C
118
(
46
),
26551
26559
(
2014
).
22.
F.
Escobar-Teran
,
H.
Perrot
, and
O.
Sel
, “
Charge storage properties of single wall carbon nanotubes/prussian blue nanocube composites studied by multi-scale coupled electrogravimetric methods
,”
Electrochim. Acta
271
,
297
304
(
2018
).
23.
W.
Gao
,
R.
Demir-Cakan
,
H.
Perrot
, and
O.
Sel
, “
Electrochemically reduced graphene oxide-sheltered ZnO nanostructures showing enhanced electrochemical performance revealed by an in situ electrogravimetric study
,”
Adv. Mater. Interfaces
6
(
5
),
1801855
(
2019
).
24.
I.
Ressam
,
M.
Lahcini
,
A.
Belen Jorge
,
H.
Perrot
, and
O.
Sel
, “
Correlation between the proton conductivity and diffusion coefficient of sulfonic acid functionalized chitosan and nafion composites via impedance spectroscopy measurements
,”
Ionics
23
(
8
),
2221
2227
(
2017
).
25.
E. M.
Halim
,
R.
Demir-Cakan
,
H.
Perrot
,
M.
El Rhazi
, and
O.
Sel
, “
Correlation between the interfacial ion dynamics and charge storage properties of poly(ortho-phenylenediamine) electrodes exhibiting high cycling stability
,”
J. Power Sources
438
,
227032
(
2019
).
26.
D.
Sačer
,
I.
Spajić
,
M.
Kraljić Roković
, and
Z.
Mandić
, “
New insights into chemical and electrochemical functionalization of graphene oxide electrodes by o-phenylenediamine and their potential applications
,”
J. Mater. Sci.
53
(
21
),
15285
15297
(
2018
).
27.
X.-H.
Zhang
,
S.-M.
Wang
,
Z.-X.
Xu
,
J.
Wu
, and
L.
Xin
, “
Poly(o-phenylenediamine)/MWNTs composite film as a hole conductor in solid-state dye-sensitized solar cells
,”
J. Photochem. Photobiol. Chem.
198
(
2
),
288
292
(
2008
).
28.
X.
Chen
,
Q.
Zhang
,
C.
Qian
,
N.
Hao
,
L.
Xu
, and
C.
Yao
, “
Electrochemical aptasensor for mucin 1 based on dual signal amplification of poly(o-phenylenediamine) carrier and functionalized carbon nanotubes tracing tag
,”
Biosens. Bioelectron.
64
,
485
492
(
2015
).
29.
E. N.
Zare
,
M. M.
Lakouraj
,
S.
Ghasemi
, and
E.
Moosavi
, “
Emulsion polymerization for the fabrication of poly(o-phenylenediamine)@multi-walled carbon nanotubes nanocomposites: Characterization and their application in the corrosion protection of 316L SS
,”
RSC Adv.
5
(
84
),
68788
68795
(
2015
).
30.
M.
Behzadi
,
E.
Noroozian
, and
M.
Mirzaei
, “
A novel coating based on carbon nanotubes/poly-ortho-phenylenediamine composite for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons
,”
Talanta
108
,
66
73
(
2013
).
31.
P.
Gajendran
and
R.
Saraswathi
, “
Enhanced electrochemical growth and redox characteristics of poly(o-phenylenediamine) on a carbon nanotube modified glassy carbon electrode and its application in the electrocatalytic reduction of oxygen
,”
J. Phys. Chem. C
111
(
30
),
11320
11328
(
2007
).
32.
E. M.
Halim
,
R.
Demir-Cakan
,
C.
Debiemme-Chouvy
,
H.
Perrot
,
M.
El Rhazi
, and
O.
Sel
, “
Poly(ortho-phenylenediamine) overlaid fibrous carbon networks exhibiting a synergistic effect for enhanced performance in hybrid micro energy storage devices
,”
J. Mater. Chem. A
9
(
16
),
10487
10496
(
2021
).
33.
G.
Sauerbrey
, “
Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung
,”
Z. Phys.
155
(
2
),
206
222
(
1959
).
34.
K.
Bizet
,
C.
Gabrielli
, and
H.
Perrot
, “
Immunodetection by quartz crystal microbalance
,”
Appl. Biochem. Biotechnol.
89
(
2
),
139
(
2000
).
35.
F.
Escobar-Teran
,
H.
Perrot
, and
O.
Sel
, “
Ion dynamics at the single wall carbon nanotube based composite electrode/electrolyte interface: Influence of the cation size and electrolyte pH
,”
J. Phys. Chem. C
123
(
7
),
4262
4273
(
2019
).
36.
W.
Gao
,
O.
Sel
, and
H.
Perrot
, “
Electrochemical and viscoelastic evolution of dodecyl sulfate-doped polypyrrole films during electrochemical cycling
,”
Electrochim. Acta
233
,
262
273
(
2017
).
37.
D.
Gao
,
R.
Liu
,
W.
Yu
,
Z.
Luo
,
C.
Liu
, and
S.
Fan
, “
Gravity-induced self-charging in carbon nanotube/polymer supercapacitors
,”
J. Phys. Chem. C
123
(
9
),
5249
5254
(
2019
).
38.
E. M.
Halim
,
H.
Perrot
,
O.
Sel
,
C.
Debiemme-Chouvy
,
K.
Lafdi
, and
M.
El Rhazi
, “
Electrosynthesis of hierarchical Cu2O–Cu(OH)2 nanodendrites supported on carbon nanofibers/poly(para-phenylenediamine) nanocomposite as high-efficiency catalysts for methanol electrooxidation
,”
Int. J. Hydrogen Energy
46
(
38
),
19926
19938
(
2021
).
39.
E. M.
Halim
,
M.
Elbasri
,
H.
Perrot
,
O.
Sel
,
K.
Lafdi
, and
M.
El Rhazi
, “
Synthesis of carbon nanofibers/poly(para-phenylenediamine)/nickel particles nanocomposite for enhanced methanol electrooxidation
,”
Int. J. Hydrogen Energy
44
(
45
),
24534
24545
(
2019
).
40.
K.
Martinusz
,
E.
Czirók
, and
G.
Inzelt
, “
Studies of the formation and redox transformation of poly(o-phenylenediamine) films using a quartz crystal microbalance
,”
J. Electroanal. Chem.
379
(
1
),
437
444
(
1994
).
41.
X.-H.
Zhang
,
S.-M.
Wang
,
J.
Wu
, and
X.-J.
Liu
, “
Electropolymerization of PoPD from aqueous solutions of sodium dodecyl benzene sulfonate at conducting glass electrode
,”
J. Appl. Polym. Sci.
104
(
3
),
1928
1932
(
2007
).
42.
H.
Yadegari
,
H.
Heli
, and
A.
Jabbari
, “
Graphene/poly(ortho-phenylenediamine) nanocomposite material for electrochemical supercapacitor
,”
J. Solid State Electrochem.
17
(
8
),
2203
2212
(
2013
).
43.
N.
Oyama
,
T.
Ohsaka
,
K.
Chiba
, and
K.
Takahashi
, “
Effects of supporting electrolyte and pH on charge transport within electropolymerized poly(o-phenylenediamine) films deposited on graphite electrodes
,”
Bull. Chem. Soc. Jpn.
61
(
4
),
1095
1101
(
1988
).
44.
W.
Gao
,
C.
Debiemme-Chouvy
,
M.
Lahcini
,
H.
Perrot
, and
O.
Sel
, “
Tuning charge storage properties of supercapacitive electrodes evidenced by in situ gravimetric and viscoelastic explorations
,”
Anal. Chem.
91
(
4
),
2885
2893
(
2019
).

Supplementary Material

You do not currently have access to this content.