Helium atom scattering and density-functional theory (DFT) are used to characterize the phonon band structure of the (3 × 1)-O surface reconstruction of Nb(100). Innovative DFT calculations comparing surface phonons of bare Nb(100) to those of the oxide surface show increased resonances for the oxide, especially at higher energies. Calculated dispersion curves align well with experimental results and yield atomic displacements to characterize polarizations. Inelastic helium time-of-flight measurements show phonons with mixed longitudinal and shear-vertical displacements along both the ⟨1̄00⟩, Γ̄X̄ and ⟨11̄0⟩, Γ̄M̄ symmetry axes over the entire first surface Brillouin zone. Force constants calculated for bulk Nb, Nb(100), and the (3 × 1)-O Nb(100) reconstruction indicate much stronger responses from the oxide surface, particularly for the top few layers of niobium and oxygen atoms. Many of the strengthened bonds at the surface create the characteristic ladder structure, which passivates and stabilizes the surface. These results represent, to our knowledge, the first phonon dispersion data for the oxide surface and the first ab initio calculation of the oxide’s surface phonons. This study supplies critical information for the further development of advanced materials for superconducting radiofrequency cavities.

1.
A.
Grassellino
,
A.
Romanenko
,
D.
Sergatskov
,
O.
Melnychuk
,
Y.
Trenikhina
,
A.
Crawford
,
A.
Rowe
,
M.
Wong
,
T.
Khabiboulline
, and
F.
Barkov
,
Supercond. Sci. Technol.
26
,
102001
(
2013
).
2.
R. W.
Hamm
and
M. E.
Hamm
,
Industrial Accelerators and Their Applications
(
World Scientific
,
Singapore
,
2012
).
3.
H.
Padamsee
,
K. W.
Shepard
, and
R.
Sundelin
,
Annu. Rev. Nucl. Part. Sci.
43
,
635
(
1993
).
4.
D. C.
Ford
,
L. D.
Cooley
, and
D. N.
Seidman
,
Supercond. Sci. Technol.
26
,
105003
(
2013
).
5.
H.
Padamsee
,
Supercond. Sci. Technol.
14
,
R28
(
2001
).
6.
S.
Posen
and
D. L.
Hall
,
Supercond. Sci. Technol.
30
,
033004
(
2017
).
7.
D. K.
Finnemore
,
T. F.
Stromberg
, and
C. A.
Swenson
,
Phys. Rev.
149
,
231
(
1966
).
8.
A.
Grassellino
,
A.
Romanenko
,
Y.
Trenikhina
,
M.
Checchin
,
M.
Martinello
,
O. S.
Melnychuk
,
S.
Chandrasekaran
,
D. A.
Sergatskov
,
S.
Posen
,
A. C.
Crawford
,
S.
Aderhold
, and
D.
Bice
,
Supercond. Sci. Technol.
30
,
094004
(
2017
).
9.
H.
Padamsee
,
J.
Knobloch
, and
T.
Hays
,
RF Superconductivity for Accelerators
(
Wiley-VCH
,
New York
,
2008
).
10.
F.
Gerigk
,
IEEE Trans. Appl. Supercond.
28
,
3500205
(
2018
).
11.
D.
Broemmelsiek
,
B.
Chase
,
D.
Edstrom
,
E.
Harms
,
J.
Leibfritz
,
S.
Nagaitsev
,
Y.
Pischalnikov
,
A.
Romanov
,
J.
Ruan
,
W.
Schappert
,
V.
Shiltsev
,
R.
Thurman-Keup
, and
A.
Valishev
,
New J. Phys.
20
,
113018
(
2018
).
12.
P.
Dhakal
,
G.
Ciovati
,
P.
Kneisel
, and
G. R.
Myneni
,
IEEE Trans. Appl. Supercond.
25
,
3500104
(
2015
).
13.
S.
Posen
and
M.
Liepe
,
Phys. Rev. Spec. Top.–Accel. Beams
17
,
112001
(
2014
).
14.
H. H.
Farrell
,
H. S.
Isaacs
, and
M.
Strongin
,
Surf. Sci.
38
,
31
(
1973
).
15.
H. H.
Farrell
and
M.
Strongin
,
Surf. Sci.
38
,
18
(
1973
).
16.
B.
An
,
S.
Fukuyama
,
K.
Yokogawa
, and
M.
Yoshimura
,
Phys. Rev. B
68
,
115423
(
2003
).
17.
Y.
Li
,
B.
An
,
S.
Fukuyama
,
K.
Yokogawa
, and
M.
Yoshimura
,
Mater. Charact.
48
,
163
(
2002
).
18.
R. D.
Veit
,
R. G.
Farber
,
N. S.
Sitaraman
,
T. A.
Arias
, and
S. J.
Sibener
,
J. Chem. Phys.
152
,
214703
(
2020
).
19.
R. D.
Veit
,
N. A.
Kautz
,
R. G.
Farber
, and
S. J.
Sibener
,
Surf. Sci.
688
,
63
(
2019
).
20.
Y.
Uehara
,
T.
Fujita
,
M.
Iwami
, and
S.
Ushioda
,
Surf. Sci.
472
,
59
(
2001
).
21.
I.
Arfaoui
,
J.
Cousty
, and
C.
Guillot
,
Surf. Sci.
557
,
119
(
2004
).
22.
I.
Arfaoui
,
C.
Guillot
,
J.
Cousty
, and
C.
Antoine
,
J. Appl. Phys.
91
,
9319
(
2002
).
23.
M.
Grundner
and
J.
Halbritter
,
J. Appl. Phys.
51
,
397
(
1980
).
24.
Y.
Wang
,
X.
Wei
,
Z.
Tian
,
Y.
Cao
,
R.
Zhai
,
T.
Ushikubo
,
K.
Sato
, and
S.
Zhuang
,
Surf. Sci.
372
,
L285
(
1997
).
25.
R.
Franchy
,
T. U.
Bartke
, and
P.
Gassmann
,
Surf. Sci.
366
,
60
(
1996
).
26.
C.
Sürgers
,
M.
Schöck
, and
H. V.
Löhneysen
,
Surf. Sci.
471
,
209
(
2001
).
27.
A. A.
McMillan
,
J. D.
Graham
,
S. A.
Willson
,
R. G.
Farber
,
C. J.
Thompson
, and
S. J.
Sibener
,
Supercond. Sci. Technol.
33
,
105012
(
2020
).
28.
I.
Estermann
and
O.
Stern
,
Z. Phys.
61
,
95
(
1930
).
29.
J. P.
Toennies
,
J. Phys.: Condens. Matter
5
,
A25
(
1993
).
30.
E.
Hulpke
,
Helium Atom Scattering from Surfaces
(
Springer-Verlag
,
Berlin
,
1992
).
31.
Atomic and Molecular Beam Methods
, edited by
G.
Scoles
(
Oxford University Press
,
New York
,
1988
), Vol. 1.
32.
Atomic and Molecular Beam Methods
, edited by
G.
Scoles
(
Oxford University Press
,
New York
,
1992
), Vol. 2.
33.
B.
Holst
,
G.
Alexandrowicz
,
N.
Avidor
,
G.
Benedek
,
G.
Bracco
,
W. E.
Ernst
,
D.
Farías
,
A. P.
Jardine
,
K.
Lefmann
,
J. R.
Manson
,
R.
Marquardt
,
S. M.
Artés
,
S. J.
Sibener
,
J. W.
Wells
,
A.
Tamtögl
, and
W.
Allison
,
Phys. Chem. Chem. Phys.
23
,
7653
(
2021
).
34.
G.
Benedek
and
J. P.
Toennies
,
Surf. Sci.
299–300
,
587
(
1994
).
35.
D.
Farías
and
K.-H.
Rieder
,
Rep. Prog. Phys.
61
,
1575
(
1998
).
36.
G.
Benedek
and
J. P.
Toennies
,
Atomic Scale Dynamics at Surfaces
(
Springer-Verlag
,
Berlin
,
2018
).
37.
E.
Hulpke
,
M.
Hüppauff
,
D.-M.
Smilgies
,
A. D.
Kulkarni
, and
F. W.
de Wette
,
Phys. Rev. B
45
,
1820
(
1992
).
38.
P. H.
Dederichs
,
H. R.
Schober
, and
D. J.
Sellmyer
,
Phonon States of Elements. Electron States and Fermi Surfaces of Alloys
(
Springer-Verlag
,
Berlin, Heidelberg
,
1981
).
39.
Y.
Nakagawa
and
A. D. B.
Woods
,
Phys. Rev. Lett.
11
,
271
(
1963
).
40.
R. I.
Sharp
,
J. Phys. C: Solid State Phys.
2
,
421
(
1969
).
41.
R. I.
Sharp
,
J. Phys. C: Solid State Phys.
2
,
432
(
1969
).
42.
P.
Geerlings
,
F.
De Proft
, and
W.
Langenaeker
,
Chem. Rev.
103
,
1793
(
2003
).
43.
B.
Gans
,
P. A.
Knipp
,
D. D.
Koleske
, and
S. J.
Sibener
,
Surf. Sci.
264
,
81
(
1992
).
44.
D. D.
Koleske
and
S. J.
Sibener
,
Rev. Sci. Instrum.
63
,
3852
(
1992
).
45.
B. R.
King
,
H. C.
Patel
,
D. A.
Gulino
, and
B. J.
Tatarchuk
,
Thin Solid Films
192
,
351
(
1990
).
46.
A.
Daccà
,
G.
Gemme
,
L.
Mattera
, and
R.
Parodi
,
Appl. Surf. Sci.
126
,
219
(
1998
).
47.
H.
Oechsner
,
J.
Giber
,
H. J.
Füßer
, and
A.
Darlinski
,
Thin Solid Films
124
,
199
(
1985
).
48.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
49.
R.
Sundararaman
,
K.
Letchworth-Weaver
,
K. A.
Schwarz
,
D.
Gunceler
,
Y.
Ozhabes
, and
T. A.
Arias
,
SoftwareX
6
,
278
(
2017
).
50.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
51.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Comput. Mater. Sci.
81
,
446
(
2014
).
52.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
 III
, and
H. A.
Atwater
,
ACS Nano
10
,
957
(
2016
).
53.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
54.
G. I.
González-Pedreros
,
J. A.
Camargo-Martínez
, and
F.
Mesa
,
Sci. Rep.
11
,
7646
(
2021
).
55.
G. M.
Eliashberg
,
Sov. Phys. JETP
11
,
696
(
1960
).
56.
A. M.
Brown
,
R.
Sundararaman
,
P.
Narang
,
W. A.
Goddard
 III
, and
H. A.
Atwater
,
Phys. Rev. B
94
,
075120
(
2016
).
57.
P. B.
Allen
,
Phys. Rev. B
6
,
2577
(
1972
).
58.
F.
Giustino
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. B
76
,
165108
(
2007
).
59.
W. H.
Butler
,
F. J.
Pinski
, and
P. B.
Allen
,
Phys. Rev. B
19
,
3708
(
1979
).
60.
I. Y.
Sklyadneva
,
G.
Benedek
,
E. V.
Chulkov
,
P. M.
Echenique
,
R.
Heid
,
K. P.
Bohnen
, and
J. P.
Toennies
,
Phys. Rev. Lett.
107
,
095502
(
2011
).
61.
A.
Tamtögl
,
P.
Kraus
,
M.
Mayrhofer-Reinhartshuber
,
D.
Campi
,
M.
Bernasconi
,
G.
Benedek
, and
W. E.
Ernst
,
Phys. Rev. B
87
,
035410
(
2013
).
62.
G.
Benedek
,
M.
Bernasconi
,
K.-P.
Bohnen
,
D.
Campi
,
E. V.
Chulkov
,
P. M.
Echenique
,
R.
Heid
,
I. Y.
Sklyadneva
, and
J. P.
Toennies
,
Phys. Chem. Chem. Phys.
16
,
7159
(
2014
).
63.
J. R.
Manson
,
G.
Benedek
, and
S.
Miret-Artés
,
J. Phys. Chem. Lett.
7
,
1016
(
2016
).
64.
P.
Hofmann
,
I. Y.
Sklyadneva
,
E. D. L.
Rienks
, and
E. V.
Chulkov
,
New J. Phys.
11
,
125005
(
2009
).
65.
V.
Bortolani
,
A.
Franchini
,
N.
Garcia
,
F.
Nizzoli
, and
G.
Santoro
,
Phys. Rev. B
28
,
7358
(
1983
).
66.
G.
Benedek
,
M.
Bernasconi
,
V.
Chis
,
E.
Chulkov
,
P. M.
Echenique
,
B.
Hellsing
, and
J.
Peter Toennies
,
J. Phys.: Condens. Matter
22
,
084020
(
2010
).
67.
J.
Kröger
,
Rep. Prog. Phys.
69
,
899
(
2006
).
68.
T.
Miyake
and
H.
Petek
,
Appl. Surf. Sci.
121–122
,
138
(
1997
).
69.
J. F.
Van Der Veen
and
J. W. M.
Frenken
,
Surf. Sci.
178
,
382
(
1986
).
70.
B.
Pluis
,
A. W. D.
van der Gon
,
J. W. M.
Frenken
, and
J. F.
van der Veen
,
Phys. Rev. Lett.
59
,
2678
(
1987
).
71.
J. P.
Charlesworth
,
I.
MacPhail
, and
P. E.
Madsen
,
J. Mater. Sci.
5
,
580
(
1970
).
72.
R. G.
Farber
,
S. A.
Willson
, and
S. J.
Sibener
,
J. Vac. Sci. Technol. A
39
,
063212
(
2021
).
You do not currently have access to this content.