Nanoscale infrared (IR) resonators with sub-diffraction limited mode volumes and open geometries have emerged as new platforms for implementing cavity quantum electrodynamics at room temperature. The use of IR nanoantennas and tip nanoprobes to study strong light–matter coupling of molecular vibrations with the vacuum field can be exploited for IR quantum control with nanometer spatial and femtosecond temporal resolution. In order to advance the development of molecule-based quantum nanophotonics in the mid-IR, we propose a generally applicable semi-empirical methodology based on quantum optics to describe light–matter interaction in systems driven by mid-IR femtosecond laser pulses. The theory is shown to reproduce recent experiments on the acceleration of the vibrational relaxation rate in infrared nanostructures. It also provides physical insights on the implementation of coherent phase rotations of the near-field using broadband nanotips. We then apply the quantum framework to develop general tip-design rules for the experimental manipulation of vibrational strong coupling and Fano interference effects in open infrared resonators. We finally propose the possibility of transferring the natural anharmonicity of molecular vibrational levels to the resonator near-field in the weak coupling regime to implement intensity-dependent phase shifts of the coupled system response with strong pulses and develop a vibrational chirping model to understand the effect. The semi-empirical quantum theory is equivalent to first-principles techniques based on Maxwell’s equations, but its lower computational cost suggests its use as a rapid design tool for the development of strongly coupled infrared nanophotonic hardware for applications ranging from quantum control of materials to quantum information processing.

1.
S.
Haroche
,
M.
Brune
, and
J. M.
Raimond
, “
From cavity to circuit quantum electrodynamics
,”
Nat. Phys.
16
,
243
246
(
2020
).
2.
R. J.
Lewis-Swan
,
D.
Barberena
,
J. A.
Muniz
,
J. R. K.
Cline
,
D.
Young
,
J. K.
Thompson
, and
A. M.
Rey
, “
Protocol for precise field sensing in the optical domain with cold atoms in a cavity
,”
Phys. Rev. Lett.
124
,
193602
(
2020
).
3.
M.
Reagor
,
W.
Pfaff
,
C.
Axline
,
R. W.
Heeres
,
N.
Ofek
,
K.
Sliwa
,
E.
Holland
,
C.
Wang
,
B.
Jacob
,
K.
Chou
,
M. J.
Hatridge
,
L.
Frunzio
,
M. H.
Devoret
,
L.
Jiang
, and
R. J.
Schoelkopf
, “
Quantum memory with millisecond coherence in circuit QED
,”
Phys. Rev. B
94
,
014506
(
2016
).
4.
S.
Putz
,
D. O.
Krimer
,
R.
Amsüss
,
A.
Valookaran
,
T.
Nöbauer
,
J.
Schmiedmayer
,
S.
Rotter
, and
J.
Majer
, “
Protecting a spin ensemble against decoherence in the strong-coupling regime of cavity QED
,”
Nat. Phys.
10
,
720
724
(
2014
).
5.
C. J.
Hood
,
T. W.
Lynn
,
A. C.
Doherty
,
A. S.
Parkins
, and
H. J.
Kimble
, “
The atom-cavity microscope: Single atoms bound in orbit by single photons
,”
Science
287
,
1447
1453
(
2000
).
6.
P. W. H.
Pinkse
,
T.
Fischer
,
P.
Maunz
, and
G.
Rempe
, “
Trapping an atom with single photons
,”
Nature
404
,
365
368
(
2000
).
7.
J. D.
Thompson
,
T. G.
Tiecke
,
N. P.
de Leon
,
J.
Feist
,
A. V.
Akimov
,
M.
Gullans
,
A. S.
Zibrov
,
V.
Vuletić
, and
M. D.
Lukin
, “
Coupling a single trapped atom to a nanoscale optical cavity
,”
Science
340
,
1202
1205
(
2013
).
8.
M.
Lee
,
J.
Kim
,
W.
Seo
,
H.-G.
Hong
,
Y.
Song
,
R. R.
Dasari
, and
K.
An
, “
Three-dimensional imaging of cavity vacuum with single atoms localized by a nanohole array
,”
Nat. Commun.
5
,
3441
(
2014
).
9.
A.
Reiserer
and
G.
Rempe
, “
Cavity-based quantum networks with single atoms and optical photons
,”
Rev. Mod. Phys.
87
,
1379
1418
(
2015
).
10.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
,
127
130
(
2016
).
11.
D.
Wang
,
H.
Kelkar
,
D.
Martin-Cano
,
D.
Rattenbacher
,
A.
Shkarin
,
T.
Utikal
,
S.
Götzinger
, and
V.
Sandoghdar
, “
Turning a molecule into a coherent two-level quantum system
,”
Nat. Phys.
15
,
483
489
(
2019
).
12.
Y.-S.
Park
,
A. K.
Cook
, and
H.
Wang
, “
Cavity QED with diamond nanocrystals and silica microspheres
,”
Nano Lett.
6
,
2075
2079
(
2006
).
13.
W. L.
Barnes
, “
Fluorescence near interfaces: The role of photonic mode density
,”
J. Mod. Opt.
45
,
661
699
(
1998
).
14.
C.
Genes
,
D.
Vitali
,
P.
Tombesi
,
S.
Gigan
, and
M.
Aspelmeyer
, “
Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes
,”
Phys. Rev. A
77
,
033804
(
2008
).
15.
K. W.
Murch
,
U.
Vool
,
D.
Zhou
,
S. J.
Weber
,
S. M.
Girvin
, and
I.
Siddiqi
, “
Cavity-assisted quantum bath engineering
,”
Phys. Rev. Lett.
109
,
183602
(
2012
).
16.
H.
Cang
,
Y.
Liu
,
Y.
Wang
,
X.
Yin
, and
X.
Zhang
, “
Giant suppression of photobleaching for single molecule detection via the Purcell effect
,”
Nano Lett.
13
,
5949
5953
(
2013
).
17.
A.
Shalabney
,
J.
George
,
J.
Hutchison
,
G.
Pupillo
,
C.
Genet
, and
T. W.
Ebbesen
, “
Coherent coupling of molecular resonators with a microcavity mode
,”
Nat. Commun.
6
,
5981
(
2015
).
18.
J. P.
Long
and
B. S.
Simpkins
, “
Coherent coupling between a molecular vibration and Fabry–Perot optical cavity to give hybridized states in the strong coupling limit
,”
ACS Photonics
2
,
130
136
(
2015
).
19.
J.
George
,
A.
Shalabney
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
, “
Liquid-phase vibrational strong coupling
,”
J. Phys. Chem. Lett.
6
,
1027
1031
(
2015
).
20.
A. D.
Dunkelberger
,
B. T.
Spann
,
K. P.
Fears
,
B. S.
Simpkins
, and
J. C.
Owrutsky
, “
Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons
,”
Nat. Commun.
7
,
13504
(
2016
).
21.
A.
Shalabney
,
J.
George
,
H.
Hiura
,
J. A.
Hutchison
,
C.
Genet
,
P.
Hellwig
, and
T. W.
Ebbesen
, “
Enhanced Raman scattering from vibro-polariton hybrid states
,”
Angew. Chem., Int. Ed.
54
,
7971
7975
(
2015
).
22.
A. D.
Dunkelberger
,
R. B.
Davidson
,
W.
Ahn
,
B. S.
Simpkins
, and
J. C.
Owrutsky
, “
Ultrafast transmission modulation and recovery via vibrational strong coupling
,”
J. Phys. Chem. A
122
,
965
971
(
2018
).
23.
B.
Xiang
,
R. F.
Ribeiro
,
Y.
Li
,
A. D.
Dunkelberger
,
B. B.
Simpkins
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
Manipulating optical nonlinearities of molecular polaritons by delocalization
,”
Sci. Adv.
5
,
eaax5196
(
2019
).
24.
A. B.
Grafton
,
A. D.
Dunkelberger
,
B. S.
Simpkins
,
J. F.
Triana
,
F. J.
Hernández
,
F.
Herrera
, and
J. C.
Owrutsky
, “
Excited-state vibration-polariton transitions and dynamics in nitroprusside
,”
Nat. Commun.
12
,
214
(
2021
).
25.
T. W.
Ebbesen
, “
Hybrid light-matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
,
2403
2412
(
2016
).
26.
J.
Lather
and
J.
George
, “
Improving enzyme catalytic efficiency by co-operative vibrational strong coupling of water
,”
J. Phys. Chem. Lett.
12
,
379
384
(
2021
).
27.
A.
Kadyan
,
A.
Shaji
, and
J.
George
, “
Boosting self-interaction of molecular vibrations under ultrastrong coupling condition
,”
J. Phys. Chem. Lett.
12
,
4313
4318
(
2021
).
28.
M. V.
Imperatore
,
J. B.
Asbury
, and
N. C.
Giebink
, “
Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime
,”
J. Chem. Phys.
154
,
191103
(
2021
).
29.
R. M. A.
Vergauwe
,
A.
Thomas
,
K.
Nagarajan
,
A.
Shalabney
,
J.
George
,
T.
Chervy
,
M.
Seidel
,
E.
Devaux
,
V.
Torbeev
, and
T. W.
Ebbesen
, “
Modification of enzyme activity by vibrational strong coupling of water
,”
Angew. Chem., Int. Ed.
58
,
15324
15328
(
2019
).
30.
J.
Lather
,
P.
Bhatt
,
A.
Thomas
,
T. W.
Ebbesen
, and
J.
George
, “
Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules
,”
Angew. Chem., Int. Ed.
58
,
10635
10638
(
2019
).
31.
K.
Hirai
,
R.
Takeda
,
J. A.
Hutchison
, and
H.
Uji‐i
, “
Modulation of Prins cyclization by vibrational strong coupling
,”
Angew. Chem., Int. Ed.
59
,
5332
5335
(
2020
).
32.
F.
Herrera
and
J.
Owrutsky
, “
Molecular polaritons for controlling chemistry with quantum optics
,”
J. Chem. Phys.
152
,
100902
(
2020
).
33.
E. A.
Muller
,
B.
Pollard
,
H. A.
Bechtel
,
R.
Adato
,
D.
Etezadi
,
H.
Altug
, and
M. B.
Raschke
, “
Nanoimaging and control of molecular vibrations through electromagnetically induced scattering reaching the strong coupling regime
,”
ACS Photonics
5
,
3594
3600
(
2018
).
34.
B.
Metzger
,
E.
Muller
,
J.
Nishida
,
B.
Pollard
,
M.
Hentschel
, and
M. B.
Raschke
, “
Purcell-enhanced spontaneous emission of molecular vibrations
,”
Phys. Rev. Lett.
123
,
153001
(
2019
).
35.
M.
Autore
,
P.
Li
,
I.
Dolado
,
F. J.
Alfaro-Mozaz
,
R.
Esteban
,
A.
Atxabal
,
F.
Casanova
,
L. E.
Hueso
,
P.
Alonso-González
,
J.
Aizpurua
,
A. Y.
Nikitin
,
S.
Vélez
, and
R.
Hillenbrand
, “
Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit
,”
Light: Sci. Appl.
7
,
17172
(
2018
).
36.
K. S.
Menghrajani
,
H. A.
Fernandez
,
G. R.
Nash
, and
W. L.
Barnes
, “
Hybridization of multiple vibrational modes via strong coupling using confined light fields
,”
Adv. Opt. Mater.
7
,
1900403
(
2019
).
37.
S. A.
Mann
,
N.
Nookala
,
S. C.
Johnson
,
M.
Cotrufo
,
A.
Mekawy
,
J. F.
Klem
,
I.
Brener
,
M. B.
Raschke
,
A.
Alù
, and
M. A.
Belkin
, “
Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces
,”
Optica
8
,
606
613
(
2021
).
38.
D. G.
Baranov
,
M.
Wersäll
,
J.
Cuadra
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Novel nanostructures and materials for strong light–matter interactions
,”
ACS Photonics
5
,
24
42
(
2018
).
39.
J.
Wang
,
K.
Yu
,
Y.
Yang
,
G. V.
Hartland
,
J. E.
Sader
, and
G. P.
Wang
, “
Strong vibrational coupling in room temperature plasmonic resonators
,”
Nat. Commun.
10
,
1527
(
2019
).
40.
R. J.
Koch
,
Th.
Seyller
, and
J. A.
Schaefer
, “
Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem
,”
Phys. Rev. B
82
,
201413
(
2010
).
41.
I. J.
Luxmoore
,
C. H.
Gan
,
P. Q.
Liu
,
F.
Valmorra
,
P.
Li
,
J.
Faist
, and
G. R.
Nash
, “
Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide
,”
ACS Photonics
1
,
1151
1155
(
2014
).
42.
A. D.
Dunkelberger
,
C. T.
Ellis
,
D. C.
Ratchford
,
A. J.
Giles
,
M.
Kim
,
C. S.
Kim
,
B. T.
Spann
,
I.
Vurgaftman
,
J. G.
Tischler
,
J. P.
Long
,
O. J.
Glembocki
,
J. C.
Owrutsky
, and
J. D.
Caldwell
, “
Active tuning of surface phonon polariton resonances via carrier photoinjection
,”
Nat. Photonics
12
,
50
56
(
2018
).
43.
M.
Autore
,
I.
Dolado
,
P.
Li
,
R.
Esteban
,
F. J.
Alfaro-Mozaz
,
A.
Atxabal
,
S.
Liu
,
J. H.
Edgar
,
S.
Vélez
,
F.
Casanova
,
L. E.
Hueso
,
J.
Aizpurua
, and
R.
Hillenbrand
, “
Enhanced light–matter interaction in 10B monoisotopic boron nitride infrared nanoresonators
,”
Adv. Opt. Mater.
9
,
2001958
(
2021
).
44.
S. A.
Mann
,
N.
Nookala
,
S.
Johnson
,
M.
Ahmed
,
J. F.
Klem
,
I.
Brener
,
M.
Raschke
,
A.
Andrea
, and
M. A.
Belkin
, “
Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces
,” in
Conference on Lasers and Electro-Optics
(
Optical Society of America
,
2020
), p.
FTu4Q.7
.
45.
S.
Buhmann
and
D.
Welsch
, “
Dispersion forces in macroscopic quantum electrodynamics
,”
Prog. Quantum Electron.
31
,
51
130
(
2007
).
46.
M. S.
Tame
,
K. R.
McEnery
,
Ş. K.
Özdemir
,
J.
Lee
,
S. A.
Maier
, and
M. S.
Kim
, “
Quantum plasmonics
,”
Nat. Phys.
9
,
329
340
(
2013
).
47.
M. K.
Schmidt
,
R.
Esteban
,
A.
González-Tudela
,
G.
Giedke
, and
J.
Aizpurua
, “
Quantum mechanical description of Raman scattering from molecules in plasmonic cavities
,”
ACS Nano
10
,
6291
6298
(
2016
).
48.
A.
González-Tudela
and
J. I.
Cirac
, “
Quantum emitters in two-dimensional structured reservoirs in the nonperturbative regime
,”
Phys. Rev. Lett.
119
,
143602
(
2017
).
49.
A.
Delga
,
J.
Feist
,
J.
Bravo-Abad
, and
F. J.
Garcia-Vidal
, “
Quantum emitters near a metal nanoparticle: Strong coupling and quenching
,”
Phys. Rev. Lett.
112
,
253601
(
2014
).
50.
T.
Neuman
,
R.
Esteban
,
G.
Giedke
,
M. K.
Schmidt
, and
J.
Aizpurua
, “
Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model
,”
Phys. Rev. A
100
,
043422
(
2019
).
51.
M. K.
Svendsen
,
Y.
Kurman
,
P.
Schmidt
,
F.
Koppens
,
I.
Kaminer
, and
K. S.
Thygesen
, “
Combining density functional theory with macroscopic QED for quantum light-matter interactions in 2D materials
,”
Nat. Commun.
12
,
2778
(
2021
).
52.
M.
Kamandar Dezfouli
and
S.
Hughes
, “
Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators
,”
ACS Photonics
4
,
1245
1256
(
2017
).
53.
J.
Feist
,
A. I.
Fernández-Domínguez
, and
F. J.
García-Vidal
, “
Macroscopic QED for quantum nanophotonics: Emitter-centered modes as a minimal basis for multiemitter problems
,”
Nanophotonics
10
,
477
489
(
2021
).
54.
D. E.
Westmoreland
,
K. P.
McClelland
,
K. A.
Perez
,
J. C.
Schwabacher
,
Z.
Zhang
, and
E. A.
Weiss
, “
Properties of quantum dots coupled to plasmons and optical cavities
,”
J. Chem. Phys.
151
,
210901
(
2019
).
55.
C.
Schneider
,
M. M.
Glazov
,
T.
Korn
,
S.
Höfling
, and
B.
Urbaszek
, “
Two-dimensional semiconductors in the regime of strong light-matter coupling
,”
Nat. Commun.
9
,
2695
(
2018
).
56.
V.
Savona
,
L. C.
Andreani
,
P.
Schwendimann
, and
A.
Quattropani
, “
Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes
,”
Solid State Commun.
93
,
733
739
(
1995
).
57.
T. T.
Tran
,
K.
Bray
,
M. J.
Ford
,
M.
Toth
, and
I.
Aharonovich
, “
Quantum emission from hexagonal boron nitride monolayers
,”
Nat. Nanotechnol.
11
,
37
41
(
2016
).
58.
P.
Kirton
,
M. M.
Roses
,
J.
Keeling
, and
E. G.
Dalla Torre
, “
Introduction to the Dicke model: From equilibrium to nonequilibrium, and vice versa
,”
Adv. Quantum Technol.
2
,
1800043
(
2019
).
59.
K. M.
Birnbaum
,
A.
Boca
,
R.
Miller
,
A. D.
Boozer
,
T. E.
Northup
, and
H. J.
Kimble
, “
Photon blockade in an optical cavity with one trapped atom
,”
Nature
436
,
87
90
(
2005
).
60.
P.
Rabl
, “
Photon blockade effect in optomechanical systems
,”
Phys. Rev. Lett.
107
,
063601
(
2011
).
61.
S.
Das
,
A.
Grankin
,
I.
Iakoupov
,
E.
Brion
,
J.
Borregaard
,
R.
Boddeda
,
I.
Usmani
,
A.
Ourjoumtsev
,
P.
Grangier
, and
A. S.
Sørensen
, “
Photonic controlled-phase gates through Rydberg blockade in optical cavities
,”
Phys. Rev. A
93
,
040303
(
2016
).
62.
D.
Plankensteiner
,
C.
Sommer
,
M.
Reitz
,
H.
Ritsch
, and
C.
Genes
, “
Enhanced collective Purcell effect of coupled quantum emitter systems
,”
Phys. Rev. A
99
,
043843
(
2019
).
63.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
2002
).
64.
F. J.
Hernández
and
F.
Herrera
, “
Multi-level quantum Rabi model for anharmonic vibrational polaritons
,”
J. Chem. Phys.
151
,
144116
(
2019
).
65.
J. F.
Triana
,
F. J.
Hernández
, and
F.
Herrera
, “
The shape of the electric dipole function determines the sub-picosecond dynamics of anharmonic vibrational polaritons
,”
J. Chem. Phys.
152
,
234111
(
2020
).
66.
L.
Ermann
,
G. G.
Carlo
,
A. D.
Chepelianskii
, and
D. L.
Shepelyansky
, “
Jaynes-Cummings model under monochromatic driving
,”
Phys. Rev. A
102
,
033729
(
2020
).
67.
B.
Pollard
,
E. A.
Muller
,
K.
Hinrichs
, and
M. B.
Raschke
, “
Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics
,”
Nat. Commun.
5
,
3587
(
2014
).
68.
J. L.
O’Brien
,
A.
Furusawa
, and
J.
Vučković
, “
Photonic quantum technologies
,”
Nat. Photonics
3
,
687
695
(
2009
).
69.
M.
Micic
,
N.
Klymyshyn
,
Y. D.
Suh
, and
H. P.
Lu
, “
Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy
,”
J. Phys. Chem. B
107
,
1574
1584
(
2003
).
70.
B. S.
Simpkins
,
J. P.
Long
,
O. J.
Glembocki
,
J.
Guo
,
J. D.
Caldwell
, and
J. C.
Owrutsky
, “
Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays
,”
Opt. Express
20
,
27725
27739
(
2012
).
71.
K. D.
Park
,
M. A.
May
,
H.
Leng
,
J.
Wang
,
J. A.
Kropp
,
T.
Gougousi
,
M.
Pelton
, and
M. B.
Raschke
, “
Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter
,”
Sci. Adv.
5
,
eaav5931
(
2019
).
72.
M. A.
May
,
D.
Fialkow
,
T.
Wu
,
K. D.
Park
,
H.
Leng
,
J. A.
Kropp
,
T.
Gougousi
,
P.
Lalanne
,
M.
Pelton
, and
M. B.
Raschke
, “
Nano-cavity QED with tunable nano-tip interaction
,”
Adv. Quantum Technol.
3
,
1900087
(
2020
).
73.
M.
Napolitano
,
M.
Koschorreck
,
B.
Dubost
,
N.
Behbood
,
R. J.
Sewell
, and
M. W.
Mitchell
, “
Interaction-based quantum metrology showing scaling beyond the Heisenberg limit
,”
Nature
471
,
486
489
(
2011
).
74.
A.
Piryatinski
,
V.
Chernyak
, and
S.
Mukamel
, “
Two-dimensional correlation spectroscopies of localized vibrations
,”
Chem. Phys.
266
,
311
322
(
2001
).
75.
R.
Venkatramani
and
S.
Mukamel
, “
Correlated line broadening in multidimensional vibrational spectroscopy
,”
J. Chem. Phys.
117
,
11089
11101
(
2002
).
76.
P.
Saurabh
and
S.
Mukamel
, “
Two-dimensional infrared spectroscopy of vibrational polaritons of molecules in an optical cavity
,”
J. Chem. Phys.
144
,
124115
(
2016
).
77.
R. F.
Ribeiro
,
A. D.
Dunkelberger
,
B.
Xiang
,
W.
Xiong
,
B. S.
Simpkins
,
J. C.
Owrutsky
, and
J.
Yuen-Zhou
, “
Theory for nonlinear spectroscopy of vibrational polaritons
,”
J. Phys. Chem. Lett.
9
,
3766
3771
(
2018
).
78.
B.
Xiang
,
R. F.
Ribeiro
,
A. D.
Dunkelberger
,
J.
Wang
,
Y.
Li
,
B. S.
Simpkins
,
J. C.
Owrutsky
,
J.
Yuen-Zhou
, and
W.
Xiong
, “
Two-dimensional infrared spectroscopy of vibrational polaritons
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
4845
4850
(
2018
).
79.
X.
Jin
,
A.
Cerea
,
G. C.
Messina
,
A.
Rovere
,
R.
Piccoli
,
F.
De Donato
,
F.
Palazon
,
A.
Perucchi
,
P.
Di Pietro
,
R.
Morandotti
,
S.
Lupi
,
F.
De Angelis
,
M.
Prato
,
A.
Toma
, and
L.
Razzari
, “
Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity
,”
Nat. Commun.
9
(
1
),
763
(
2018
).
80.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Courier Corporation
,
1980
).
81.
E. C.
Fulmer
,
P.
Mukherjee
,
A. T.
Krummel
, and
M. T.
Zanni
, “
A pulse sequence for directly measuring the anharmonicities of coupled vibrations: Two-quantum two-dimensional infrared spectroscopy
,”
J. Chem. Phys.
120
,
8067
8078
(
2004
).
82.
A. D.
Dunkelberger
,
A. B.
Grafton
,
I.
Vurgaftman
,
Ö. O.
Soykal
,
T. L.
Reinecke
,
R. B.
Davidson
,
B. S.
Simpkins
, and
J. C.
Owrutsky
, “
Saturable absorption in solution-phase and cavity-coupled tungsten hexacarbonyl
,”
ACS Photonics
6
,
2719
(
2019
).
83.
S.
Nathan
,
N.
Lambert
,
F.
Nori
, and
S.
De Liberato
, “
Superradiance with local phase-breaking effects
,”
Phys. Rev. A
96
,
023863
(
2017
).
84.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Generalization of the Tavis–Cummings model for multi-level anharmonic systems
,”
New J. Phys.
23
(
6
),
063081
(
2021
).
85.
O.
Ávalos-Ovando
,
L. V.
Besteiro
,
Z.
Wang
, and
A. O.
Govorov
, “
Temporal plasmonics: Fano and Rabi regimes in the time domain in metal nanostructures
,”
Nanophotonics
9
,
3587
3595
(
2020
).
86.
F.
Huth
,
A.
Chuvilin
,
M.
Schnell
,
I.
Amenabar
,
R.
Krutokhvostov
,
S.
Lopatin
, and
R.
Hillenbrand
, “
Resonant antenna probes for tip-enhanced infrared near-field microscopy
,”
Nano Lett.
13
,
1065
1072
(
2013
).
87.
V. M.
Axt
and
S.
Mukamel
, “
Nonlinear optics of semiconductor and molecular nanostructures: A common perspective
,”
Rev. Mod. Phys.
70
,
145
174
(
1998
).
You do not currently have access to this content.