Thermofield dynamics is an exactly correct formulation of quantum mechanics at finite temperature in which a wavefunction is governed by an effective temperature-dependent quantum Hamiltonian. The optimized mean trajectory (OMT) approximation allows the calculation of spectroscopic response functions from trajectories produced by the classical limit of a mapping Hamiltonian that includes physical nuclear degrees of freedom and other effective degrees of freedom representing discrete vibronic states. Here, we develop a thermofield OMT (TF-OMT) approach in which the OMT procedure is applied to a temperature-dependent classical Hamiltonian determined from the thermofield-transformed quantum mapping Hamiltonian. Initial conditions for bath nuclear degrees of freedom are sampled from a zero-temperature distribution. Calculations of two-dimensional electronic spectra and two-dimensional vibrational–electronic spectra are performed for models that include excitonically coupled electronic states. The TF-OMT calculations agree very closely with the corresponding OMT results, which, in turn, represent well benchmark calculations with the hierarchical equations of motion method.

1.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
2.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
3.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
New York
,
2011
).
4.
L.
Seidner
,
G.
Stock
, and
W.
Domcke
,
J. Chem. Phys.
103
,
3998
(
1995
).
5.
T.
Mancal
,
A. V.
Pisliakov
, and
G. R.
Fleming
,
J. Chem. Phys.
124
,
234504
(
2006
).
6.
L.
Chen
,
E.
Palacino-González
,
M. F.
Gelin
, and
W.
Domcke
,
J. Chem. Phys.
147
,
234104
(
2017
).
7.
J.
Provazza
,
F.
Segatta
, and
D. F.
Coker
,
J. Chem. Theory Comput.
17
,
29
(
2020
).
8.
W. G.
Noid
,
G. S.
Ezra
, and
R. F.
Loring
,
J. Chem. Phys.
119
,
1003
(
2003
).
9.
W. G.
Noid
,
G. S.
Ezra
, and
R. F.
Loring
,
J. Chem. Phys.
120
,
1491
(
2004
).
10.
H.-D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
11.
H.-D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
71
,
2156
(
1979
).
12.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
72
,
2272
(
1980
).
13.
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
14.
M.
Thoss
,
W. H.
Miller
, and
G.
Stock
,
J. Chem. Phys.
112
,
10282
(
2000
).
15.
D. W. H.
Swenson
,
T.
Levy
,
G.
Cohen
,
E.
Rabani
, and
W. H.
Miller
,
J. Chem. Phys.
134
,
164103
(
2011
).
16.
S. J.
Cotton
and
W. H.
Miller
,
J. Phys. Chem. A
117
,
7190
(
2013
).
17.
S. J.
Cotton
,
K.
Igumenshchev
, and
W. H.
Miller
,
J. Chem. Phys.
141
,
084104
(
2014
).
18.
W. H.
Miller
and
S. J.
Cotton
,
J. Chem. Phys.
145
,
081102
(
2016
).
19.
S. J.
Cotton
and
W. H.
Miller
,
J. Chem. Phys.
150
,
104101
(
2019
).
20.
S. J.
Cotton
and
W. H.
Miller
,
J. Chem. Phys.
150
,
194110
(
2019
).
21.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
,
J. Phys. Chem. Lett.
9
,
319
(
2018
).
22.
X.
Gao
,
M. A. C.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
,
J. Chem. Theory Comput.
16
,
2883
(
2020
).
23.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
153
,
194110
(
2020
).
24.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
153
,
194109
(
2020
).
25.
J.
Provazza
and
D. F.
Coker
,
J. Chem. Phys.
148
,
181102
(
2018
).
26.
X.
Gao
,
Y.
Lai
, and
E.
Geva
,
J. Chem. Theory Comput.
16
,
6465
(
2020
).
27.
X.
Gao
and
E.
Geva
,
J. Chem. Theory Comput.
16
,
6491
(
2020
).
28.
J. R.
Mannouch
and
J. O.
Richardson
,
J. Chem. Phys.
156
,
024108
(
2022
).
29.
M.
Gerace
and
R. F.
Loring
,
J. Chem. Phys.
138
,
124104
(
2013
).
30.
M.
Gerace
and
R. F.
Loring
,
J. Phys. Chem. B
117
,
15452
(
2013
).
31.
M.
Alemi
and
R. F.
Loring
,
J. Phys. Chem. B
119
,
8950
(
2015
).
32.
M.
Alemi
and
R. F.
Loring
,
J. Chem. Phys.
142
,
212417
(
2015
).
33.
R. F.
Loring
,
J. Chem. Phys.
146
,
144016
(
2017
).
34.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
150
,
164114
(
2019
).
35.
K.
Polley
and
R. F.
Loring
,
J. Phys. Chem. B
124
,
9913
(
2020
).
36.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
153
,
204103
(
2020
).
37.
K.
Polley
and
R. F.
Loring
,
J. Chem. Phys.
154
,
194110
(
2021
).
38.
D. M.
Jonas
,
Annu. Rev. Phys. Chem.
54
,
425
(
2003
).
39.
M. L.
Cowan
,
J. P.
Ogilvie
, and
R. J. D.
Miller
,
Chem. Phys. Lett.
386
,
184
(
2004
).
40.
T.
Brixner
,
I. V.
Stiopkin
, and
G. R.
Fleming
,
Opt. Lett.
29
,
884
(
2004
).
41.
P. F.
Tekavec
,
J. A.
Myers
,
K. L. M.
Lewis
, and
J. P.
Ogilvie
,
Opt. Lett.
34
,
1390
(
2009
).
42.
T. L.
Courtney
,
Z. W.
Fox
,
K. M.
Slenkamp
, and
M.
Khalil
,
J. Chem. Phys.
143
,
154201
(
2015
).
43.
J. D.
Gaynor
and
M.
Khalil
,
J. Chem. Phys.
147
,
094202
(
2017
).
44.
J. D.
Gaynor
,
A.
Petrone
,
X.
Li
, and
M.
Khalil
,
J. Phys. Chem. Lett.
9
,
6289
(
2018
).
45.
J. D.
Gaynor
,
J.
Sandwisch
, and
M.
Khalil
,
Nat. Commun.
10
,
5621
(
2019
).
46.
Z. W.
Fox
,
T. J.
Blair
, and
M.
Khalil
,
J. Phys. Chem. Lett.
11
,
1558
(
2020
).
47.
M.
Suzuki
,
J. Stat. Phys.
42
,
1047
(
1986
).
48.
T.
Hatsuda
,
Nucl. Phys. A
492
,
187
(
1989
).
49.
H.
Umezawa
,
Advanced Field Theory: Micro, Macro, and Thermal Physics
(
Springer
,
New York
,
1995
).
50.
P.
Shushkov
and
T. F.
Miller
 III
,
J. Chem. Phys.
151
,
134107
(
2019
).
51.
G.
Harsha
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
150
,
154109
(
2019
).
52.
G.
Harsha
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Theory Comput.
15
,
6127
(
2019
).
53.
G.
Harsha
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
153
,
124115
(
2020
).
54.
E. W.
Fischer
and
P.
Saalfrank
,
J. Chem. Phys.
155
,
134109
(
2021
).
55.
R.
Borrelli
and
M. F.
Gelin
,
J. Chem. Phys.
145
,
224101
(
2016
).
56.
I.
de Vega
and
M.-C.
Banuls
,
Phys. Rev. A
92
,
052116
(
2015
).
57.
R.
Borrelli
and
M. F.
Gelin
,
Sci. Rep.
7
,
9127
(
2017
).
58.
R.
Borrelli
,
Chem. Phys.
515
,
236
(
2018
).
59.
R.
Borrelli
and
M. F.
Gelin
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1539
(
2021
).
60.
R.
Borrelli
and
S.
Dolgov
,
J. Phys. Chem. B
125
,
5397
(
2021
).
61.
L.
Chen
,
R.
Borrelli
,
D. V.
Shalashilin
,
Y.
Zhao
, and
M. F.
Gelin
,
J. Chem. Theory Comput.
17
,
4359
(
2021
).
62.
M. F.
Gelin
and
R.
Borrelli
,
J. Chem. Theory Comput.
17
,
4316
(
2021
).
63.
M. F.
Gelin
,
A.
Velardo
, and
R.
Borrelli
,
J. Chem. Phys.
155
,
134102
(
2021
).
64.
T.
Begušić
and
J.
Vaníček
,
J. Chem. Phys.
153
,
024105
(
2020
).
65.
T.
Begušić
and
J.
Vaníček
,
J. Phys. Chem. Lett.
12
,
2997
(
2021
).
66.
T.
Begušić
and
J.
Vaníček
,
Chimia
75
,
261
(
2021
).
67.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
68.
Y.
Tanimura
,
Phys. Rev. A
41
,
6676
(
1990
).
69.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
70.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
084501
(
2006
).
71.
Y.
Tanimura
,
J. Chem. Phys.
141
,
044114
(
2014
).
72.
L.
Chen
,
R.
Zheng
,
Q.
Shi
, and
Y.
Yan
,
J. Chem. Phys.
131
,
094502
(
2009
).
73.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
74.
J.
Chen
and
N.
Makri
,
Chem. Phys.
370
,
15
(
2010
).
75.
J.
Zhu
,
S.
Kais
,
P.
Rebentrost
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
115
,
1531
1537
(
2011
).
76.
Y.
Yan
,
J.
Jin
,
R.-X.
Xu
, and
X.
Zheng
,
Front. Phys.
11
,
110306
(
2016
).
77.
I. S.
Dunn
,
R.
Tempelaar
, and
D. R.
Reichman
,
J. Chem. Phys.
150
,
184109
(
2019
).
78.
P. L.
McRobbie
and
E.
Geva
,
J. Phys. Chem. A
113
,
10425
(
2009
).
79.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
Oxford
,
2006
).
80.
J. H.
Fetherolf
and
T. C.
Berkelbach
,
J. Chem. Phys.
147
,
244109
(
2017
).
81.
N.
Makri
,
J. Chem. Phys.
103
,
2823
(
1999
).
82.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
4828
(
1999
).
83.
P. L.
Walters
,
T. C.
Allen
, and
N.
Makri
,
J. Comput. Chem.
38
,
110
(
2017
).
85.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
123
,
014503
(
2005
).
You do not currently have access to this content.