We report a theoretical investigation of the adsorption and activation properties of CO2 on eight-atom 3d, 4d, and 5d transition-metal (TM) clusters based on density functional theory calculations. From our results and analyses, in the lowest energy configurations, CO2 binds via a chemisorption mechanism on Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt (adsorption energy from −0.49 eV on Pt up to −1.40 eV on Os), where CO2 breaks its linearity and adopts an angular configuration due to the charge transfer from the clusters toward the C atom in the adsorbed CO2. In contrast, it binds via physisorption on Cu, Ag, and Au and maintains its linearity due to a negligible charge transfer toward CO2 and has a small adsorption energy (from −0.17 eV on Cu up to −0.18 eV on Ag). There is an energetic preference for twofold bridge TM sites, which favors binding of C with two TM atoms, which enhances the charge transfer ten times than on the top TM sites (onefold). We identified that the strength of the CO2–TM8 interaction increases when the energy values of the highest occupied molecular orbital (HOMO) of the TM8 are closer to the energy values of the lowest unoccupied molecular orbital of CO2, which contributes to maximize the charge transfer toward the molecule. Beyond the energy position of the HOMO states, the delocalization of 5d orbitals plays an important role in the adsorption strength in TM, especially for the iron group, e.g., the adsorption energies are −1.08 eV (Fe, 3d), −1.19 eV (Ru, 4d), and −1.40 eV (Os, 5d).

1.
S.
Solomon
,
G.-K.
Plattner
,
R.
Knutti
, and
P.
Friedlingstein
, “
Irreversible climate change due to carbon dioxide emissions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
1704
1709
(
2009
).
2.
S.
Gössling
and
J.
Higham
, “
The low-carbon imperative: Destination management under urgent climate change
,”
J. Travel Res.
60
,
1167
1179
(
2020
).
3.
P.
Madejski
,
K.
Chmiel
,
N.
Subramanian
, and
T.
Kuś
, “
Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies
,”
Energies
15
,
887
(
2022
).
4.
M.
Zhu
,
Q.
Ge
, and
X.
Zhu
, “
Catalytic reduction of CO2 to CO via reverse water gas shift reaction: Recent advances in the design of active and selective supported metal catalysts
,”
Trans. Tianjin Univ.
26
,
172
187
(
2020
).
5.
T. N.
Do
,
C.
You
, and
J.
Kim
, “
A CO2 utilization framework for liquid fuels and chemical production: Techno-economic and environmental analysis
,”
Energy Environ. Sci.
15
,
169
184
(
2022
).
6.
I.
Ghiat
and
T.
Al-Ansari
, “
A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus
,”
J. CO2 Util.
45
,
101432
(
2021
).
7.
L.
Xu
,
Y.
Xiu
,
F.
Liu
,
Y.
Liang
, and
S.
Wang
, “
Research progress in conversion of CO2 to valuable fuels
,”
Molecules
25
,
3653
(
2020
).
8.
W.
Zhang
,
Y.
Hu
,
L.
Ma
,
G.
Zhu
,
Y.
Wang
,
X.
Xue
,
R.
Chen
,
S.
Yang
, and
Z.
Jin
, “
Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals
,”
Adv. Sci.
5
,
1700275
(
2017
).
9.
Y.-R.
Luo
,
Comprehensive Handbook of Chemical Bond Energies
(
CRC Press
,
2007
).
10.
H.
Tian
,
D.
Maciążek
,
Z.
Postawa
,
B. J.
Garrison
, and
N.
Winograd
, “
C–O bond dissociation and induced chemical ionization using high energy (CO2)n+ gas cluster ion beam
,”
J. Am. Soc. Mass Spectrom.
30
,
476
481
(
2018
).
11.
A.
Álvarez
,
M.
Borges
,
J. J.
Corral-Pérez
,
J. G.
Olcina
,
L.
Hu
,
D.
Cornu
,
R.
Huang
,
D.
Stoian
, and
A.
Urakawa
, “
CO2 activation over catalytic surfaces
,”
ChemPhysChem
18
,
3135
3141
(
2017
).
12.
C.
Vogt
,
M.
Monai
,
E. B.
Sterk
,
J.
Palle
,
A. E. M.
Melcherts
,
B.
Zijlstra
,
E.
Groeneveld
,
P. H.
Berben
,
J. M.
Boereboom
,
E. J. M.
Hensen
,
F.
Meirer
,
I. A. W.
Filot
, and
B. M.
Weckhuysen
, “
Understanding carbon dioxide activation and carbon–carbon coupling over nickel
,”
Nat. Commun.
10
,
5330
(
2019
).
13.
V. K.
Ocampo-Restrepo
,
L. G.
Verga
, and
J. L. F.
Da Silva
, “
Ab initio study of the C–O bond dissociation in CO2 reduction by redox and carboxyl routes on 3d transition metal systems
,”
J. Phys. Chem. C
125
,
26296
26306
(
2021
).
14.
V. K.
Ocampo-Restrepo
,
L.
Zibordi-Besse
, and
J. L. F.
Da Silva
, “
Ab initio investigation of the atomistic descriptors in the activation of small molecules on 3d transition-metal 13-atom clusters: The example of H2, CO, H2O, and CO2
,”
J. Chem. Phys.
151
,
214301
(
2019
).
15.
K. E. A.
Batista
,
V. K.
Ocampo-Restrepo
,
M. D.
Soares
,
M. G.
Quiles
,
M. J.
Piotrowski
, and
J. L. F.
Da Silva
, “
Ab initio investigation of CO2 adsorption on 13-atom 4d clusters
,”
J. Chem. Inf. Model.
60
,
537
545
(
2020
).
16.
P. C. D.
Mendes
,
L. G.
Verga
, and
J. L. F.
Da Silva
, “
Ab initio screening of Pt-based transition-metal nanoalloys using descriptors derived from the adsorption and activation of CO2
,”
Phys. Chem. Chem. Phys.
23
,
6029
6041
(
2021
).
17.
F.
Solymosi
, “
The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces
,”
J. Mol. Catal. A: Chem.
65
,
337
358
(
1991
).
18.
J.
Ko
,
B.-K.
Kim
, and
J. W.
Han
, “
Density functional theory study for catalytic activation and dissociation of CO2 on bimetallic alloy surfaces
,”
J. Phys. Chem. C
120
,
3438
3447
(
2016
).
19.
X.
Liu
,
L.
Sun
, and
W.-Q.
Deng
, “
Theoretical investigation of CO2 adsorption and dissociation on low index surfaces of transition metals
,”
J. Phys. Chem. C
122
,
8306
8314
(
2018
).
20.
Á.
Morales-García
,
A.
Fernández-Fernández
,
F.
Viñes
, and
F.
Illas
, “
CO2 abatement using two-dimensional MXene carbides
,”
J. Mater. Chem. A
6
,
3381
3385
(
2018
).
21.
I.
Persson
,
J.
Halim
,
H.
Lind
,
T. W.
Hansen
,
J. B.
Wagner
,
L.-Å.
Näslund
,
V.
Darakchieva
,
J.
Palisaitis
,
J.
Rosen
, and
P. O. Å.
Persson
, “
2D transition metal carbides (MXenes) for carbon capture
,”
Adv. Mater.
31
,
1805472
(
2018
).
22.
A.
Mazheika
,
Y.-G.
Wang
,
R.
Valero
,
F.
Viñes
,
F.
Illas
,
L. M.
Ghiringhelli
,
S. V.
Levchenko
, and
M.
Scheffler
, “
Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides
,”
Nat. Commun.
13
,
419
(
2022
).
23.
Clusters of Atoms and Molecules
, edited by
H.
Haberland
(
Springer Berlin Heidelberg
,
1994
).
24.
B.
Yang
,
C.
Liu
,
A.
Halder
,
E. C.
Tyo
,
A. B. F.
Martinson
,
S.
Seifert
,
P.
Zapol
,
L. A.
Curtiss
, and
S.
Vajda
, “
Copper cluster size effect in methanol synthesis from CO2
,”
J. Phys. Chem. C
121
,
10406
10412
(
2017
).
25.
P. C. D.
Mendes
,
V. K.
Ocampo-Restrepo
, and
J. L. F.
Da Silva
, “
Ab initio investigation of quantum size effects on the adsorption of CO2, CO, H2O, and H2 on transition-metal particles
,”
Phys. Chem. Chem. Phys.
22
,
8998
9008
(
2020
).
26.
Megha
,
K.
Mondal
,
A.
Banerjee
, and
T. K.
Ghanty
, “
Adsorption and activation of CO2 on Zrn (n = 2–7) clusters
,”
Phys. Chem. Chem. Phys.
22
,
16877
16886
(
2020
).
27.
P. L.
Rodríguez-Kessler
,
A. R.
Rodríguez-Domínguez
, and
A.
Muñoz-Castro
, “
Systematic cluster growth: A structure search method for transition metal clusters
,”
Phys. Chem. Chem. Phys.
23
,
4935
4943
(
2021
).
28.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
, “
Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
,”
Phys. Rev. B
46
,
6671
6687
(
1992
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
30.
A.
Tkatchenko
and
M.
Scheffler
, “
Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data
,”
Phys. Rev. Lett.
102
,
073005
(
2009
).
31.
A.
Tkatchenko
,
L.
Romaner
,
O. T.
Hofmann
,
E.
Zojer
,
C.
Ambrosch-Draxl
, and
M.
Scheffler
, “
Van der Waals interactions between organic adsorbates and at organic/inorganic interfaces
,”
MRS Bull.
35
,
435
442
(
2010
).
32.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
33.
V.
Havu
,
V.
Blum
,
P.
Havu
, and
M.
Scheffler
, “
Efficient integration for all-electron electronic structure calculation using numeric basis functions
,”
J. Comput. Phys.
228
,
8367
8379
(
2009
).
34.
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
, “
The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules
,”
J. Chem. Phys.
105
,
6505
6516
(
1996
).
35.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
USA
,
2007
).
36.
A. S.
Chaves
,
M. J.
Piotrowski
, and
J. L. F.
Da Silva
, “
Evolution of the structural, energetic, and electronic properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn systems for n = 2–15): A density functional theory investigation
,”
Phys. Chem. Chem. Phys.
19
,
15484
15502
(
2017
).
37.
L.
Zibordi-Besse
,
P.
Tereshchuk
,
A. S.
Chaves
, and
J. L. F.
Da Silva
, “
Ethanol and water adsorption on transition-metal 13-atom clusters: A density functional theory investigation within van der Waals corrections
,”
J. Phys. Chem. A
120
,
4231
4240
(
2016
).
38.
N. A. M. S.
Caturello
,
R.
Besse
,
A. C. H.
Da Silva
,
D.
Guedes-Sobrinho
,
M. P.
Lima
, and
J. L. F.
Da Silva
, “
Ab initio investigation of atomistic insights into the nanoflake formation of transition-metal dichalcogenides: The examples of MoS2, MoSe2, and MoTe2
,”
J. Phys. Chem. C
122
,
27059
27069
(
2018
).
39.
S. S.
Xantheas
and
K.
Ruedenberg
, “
Potential energy surfaces of carbon dioxide
,”
Int. J. Quantum Chem.
49
,
409
427
(
1994
).
40.
C. D.
Cooper
and
R. N.
Compton
, “
Electron attachment to cyclic anhydrides and related compounds
,”
J. Chem. Phys.
59
,
3550
3565
(
1973
).
41.
R. J.
Buenker
and
S. D.
Peyerimhoff
, “
Molecular geometry and the Mulliken-Walsh molecular orbital model. Ab initio study
,”
Chem. Rev.
74
,
127
188
(
1974
).
42.
H.
Häkkinen
,
M.
Moseler
, and
U.
Landman
, “
Bonding in Cu, Ag, and Au clusters: Relativistic effects, trends, and surprises
,”
Phys. Rev. Lett.
89
,
033401
(
2002
).
43.
M.
Aresta
,
Carbon Dioxide as Chemical Feedstock
(
Wiley
,
2010
).

Supplementary Material

You do not currently have access to this content.