Monolayer and two-dimensional (2D) systems exhibit rich phase behavior, compared with 3D systems, in particular, due to the hexatic phase playing a central role in melting scenarios. The attraction range is known to affect critical gas–liquid behavior (liquid–liquid in protein and colloidal systems), but the effect of attraction on melting in 2D systems remains unstudied systematically. Here, we have revealed how the attraction range affects the phase diagrams and melting scenarios in a 2D system. Using molecular dynamics simulations, we have considered the generalized Lennard-Jones system with a fixed repulsion branch and different power indices of attraction from long-range dipolar to short-range sticky-sphere-like. A drop in the attraction range has been found to reduce the temperature of the gas–liquid critical point, bringing it closer to the gas–liquid–solid triple point. At high temperatures, attraction does not affect the melting scenario that proceeds through the cascade of solid–hexatic (Berezinskii–Kosterlitz–Thouless) and hexatic–liquid (first-order) phase transitions. In the case of dipolar attraction, we have observed two triple points inherent in a 2D system: hexatic–liquid–gas and crystal–hexatic–gas, the temperature of the crystal–hexatic–gas triple point is below the hexatic–liquid–gas triple point. This observation may have far-reaching consequences for future studies, since phase diagrams determine possible routes of self-assembly in molecular, protein, and colloidal systems, whereas the attraction range can be adjusted with complex solvents and external electric or magnetic fields. The results obtained may be widely used in condensed matter, chemical physics, materials science, and soft matter.

1.
A.
Fernandez-Nieves
and
A. M.
Puertas
,
Fluids, Colloids, and Soft Materials: An Introduction to Soft Matter Physics
(
Wiley
,
2016
).
2.
V. N.
Ryzhov
,
E. E.
Tareyeva
,
Y. D.
Fomin
, and
E. N.
Tsiok
, “
Berezinskii–Kosterlitz–Thouless transition and two-dimensional melting
,”
Phys.-Usp.
60
,
857
885
(
2017
).
3.
V. N.
Ryzhov
,
E. E.
Tareyeva
,
Y. D.
Fomin
, and
E. N.
Tsiok
, “
Complex phase diagrams of systems with isotropic potentials: Results of computer simulations
,”
Phys.-Usp.
63
,
417
439
(
2020
).
4.
V. L.
Berezinskii
, “
Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems
,”
Sov. Phys. JETP
32
,
493
500
(
1971
).
5.
J. M.
Kosterlitz
and
D. J.
Thouless
, “
Ordering, metastability and phase transitions in two-dimensional systems
,”
J. Phys. C: Solid State Phys.
6
,
1181
1203
(
1973
).
6.
B. I.
Halperin
and
D. R.
Nelson
, “
Theory of two-dimensional melting
,”
Phys. Rev. Lett.
41
,
121
124
(
1978
).
7.
D. R.
Nelson
and
B. I.
Halperin
, “
Dislocation-mediated melting in two dimensions
,”
Phys. Rev. B
19
,
2457
2484
(
1979
).
8.
A. P.
Young
, “
Melting and the vector Coulomb gas in two dimensions
,”
Phys. Rev. B
19
,
1855
1866
(
1979
).
9.
S. T.
Chui
, “
Grain-boundary theory of melting in two dimensions
,”
Phys. Rev. B
28
,
178
194
(
1983
).
10.
V.
Ryzhov
, “
Dislocation-disclination melting of two-dimensional lattices
,”
JETP
73
,
899
(
1991
).
11.
E. P.
Bernard
and
W.
Krauth
, “
Two-step melting in two dimensions: First-order liquid-hexatic transition
,”
Phys. Rev. Lett.
107
,
155704
(
2011
).
12.
M.
Engel
,
J. A.
Anderson
,
S. C.
Glotzer
,
M.
Isobe
,
E. P.
Bernard
, and
W.
Krauth
, “
Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods
,”
Phys. Rev. E
87
,
042134
(
2013
).
13.
W.
Qi
,
A. P.
Gantapara
, and
M.
Dijkstra
, “
Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres
,”
Soft Matter
10
,
5449
(
2014
).
14.
S. C.
Kapfer
and
W.
Krauth
, “
Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions
,”
Phys. Rev. Lett.
114
,
035702
(
2015
).
15.
A. L.
Thorneywork
,
J. L.
Abbott
,
D. G. A. L.
Aarts
, and
R. P. A.
Dullens
, “
Two-dimensional melting of colloidal hard spheres
,”
Phys. Rev. Lett.
118
,
158001
(
2017
).
16.
D. E.
Dudalov
,
E. N.
Tsiok
,
Y. D.
Fomin
, and
V. N.
Ryzhov
, “
Effect of a potential softness on the solid-liquid transition in a two-dimensional core-softened potential system
,”
J. Chem. Phys.
141
,
18C522
(
2014
).
17.
D. E.
Dudalov
,
Y. D.
Fomin
,
E. N.
Tsiok
, and
V. N.
Ryzhov
, “
How dimensionality changes the anomalous behavior and melting scenario of a core-softened potential system?
,”
Soft Matter
10
,
4966
4976
(
2014
).
18.
V. N.
Ryzhov
and
E. E.
Tareyeva
, “
Melting in two dimensions: First-order versus continuous transition
,”
Physica A
314
,
396
404
(
2002
), part of the Special Issue: Meeting on Horizons in Complex Systems.
19.
E. N.
Tsiok
,
D. E.
Dudalov
,
Y. D.
Fomin
, and
V. N.
Ryzhov
, “
Random pinning changes the melting scenario of a two-dimensional core-softened potential system
,”
Phys. Rev. E
92
,
032110
(
2015
).
20.
L. M.
Pomirchi
,
V. N.
Ryzhov
, and
E. E.
Tareyeva
, “
Melting of two-dimensional systems: Dependence of the type of transition on the radius of the potential
,”
Theor. Math. Phys.
130
,
101
110
(
2002
).
21.
V. V.
Brazhkin
,
A. G.
Lyapin
,
V. N.
Ryzhov
,
K.
Trachenko
,
Y. D.
Fomin
, and
E. N.
Tsiok
, “
Where is the supercritical fluid on the phase diagram?
,”
Phys.-Usp.
55
,
1061
1079
(
2012
).
22.
N. P.
Kryuchkov
,
S. A.
Khrapak
, and
S. O.
Yurchenko
, “
Thermodynamics of two-dimensional Yukawa systems across coupling regimes
,”
J. Chem. Phys.
146
,
134702
(
2017
).
23.
S. A.
Khrapak
,
N. P.
Kryuchkov
, and
S. O.
Yurchenko
, “
Thermodynamics and dynamics of two-dimensional systems with dipolelike repulsive interactions
,”
Phys. Rev. E
97
,
022616
(
2018
).
24.
N. P.
Kryuchkov
,
E. V.
Yakovlev
,
E. A.
Gorbunov
,
L.
Couëdel
,
A. M.
Lipaev
, and
S. O.
Yurchenko
, “
Thermoacoustic instability in two-dimensional fluid complex plasmas
,”
Phys. Rev. Lett.
121
,
075003
(
2018
).
25.
N. P.
Kryuchkov
,
L. A.
Mistryukova
,
V. V.
Brazhkin
, and
S. O.
Yurchenko
, “
Excitation spectra in fluids: How to analyze them properly
,”
Sci. Rep.
9
,
10483
(
2019
).
26.
N. P.
Kryuchkov
,
V. V.
Brazhkin
, and
S. O.
Yurchenko
, “
Anticrossing of longitudinal and transverse modes in simple fluids
,”
J. Phys. Chem. Lett.
10
,
4470
4475
(
2019
).
27.
E. V.
Yakovlev
,
N. P.
Kryuchkov
,
P. V.
Ovcharov
,
A. V.
Sapelkin
,
V. V.
Brazhkin
, and
S. O.
Yurchenko
, “
Direct experimental evidence of longitudinal and transverse mode hybridization and anticrossing in simple model fluids
,”
J. Phys. Chem. Lett.
11
,
1370
1376
(
2020
).
28.
N. P.
Kryuchkov
,
L. A.
Mistryukova
,
A. V.
Sapelkin
,
V. V.
Brazhkin
, and
S. O.
Yurchenko
, “
Universal effect of excitation dispersion on the heat capacity and gapped states in fluids
,”
Phys. Rev. Lett.
125
,
125501
(
2020
).
29.
S.
Khrapak
,
N. P.
Kryuchkov
,
L. A.
Mistryukova
, and
S. O.
Yurchenko
, “
From soft- to hard-sphere fluids: Crossover evidenced by high-frequency elastic moduli
,”
Phys. Rev. E
103
,
052117
(
2021
).
30.
Y. D.
Fomin
,
E. A.
Gaiduk
,
E. N.
Tsiok
, and
V. N.
Ryzhov
, “
The phase diagram and melting scenarios of two-dimensional Hertzian spheres
,”
Mol. Phys.
116
,
3258
3270
(
2018
).
31.
E. N.
Tsiok
,
E. A.
Gaiduk
,
Y. D.
Fomin
, and
V. N.
Ryzhov
, “
Melting scenarios of two-dimensional Hertzian spheres with a single triangular lattice
,”
Soft Matter
16
,
3962
3972
(
2020
).
32.
E. N.
Tsiok
,
Y. D.
Fomin
,
E. A.
Gaiduk
, and
V. N.
Ryzhov
, “
Structural transition in two-dimensional Hertzian spheres in the presence of random pinning
,”
Phys. Rev. E
103
,
062612
(
2021
).
33.
B.
Smit
and
D.
Frenkel
, “
Vapor–liquid equilibria of the two-dimensional Lennard-Jones fluid(s)
,”
J. Chem. Phys.
94
,
5663
5668
(
1991
).
34.
D.
Frenkel
and
J. P.
McTague
, “
Evidence for an orientationally ordered two-dimensional fluid phase from molecular-dynamics calculations
,”
Phys. Rev. Lett.
42
,
1632
1635
(
1979
).
35.
S.
Toxvaerd
, “
Melting in a two-dimensional Lennard-Jones system
,”
J. Chem. Phys.
69
,
4750
4752
(
1978
).
36.
F. F.
Abraham
, “
Melting in two dimensions is first order: An isothermal-isobaric Monte Carlo study
,”
Phys. Rev. Lett.
44
,
463
466
(
1980
).
37.
J. M.
Phillips
,
L. W.
Bruch
, and
R. D.
Murphy
, “
The two-dimensional Lennard-Jones system: Sublimation, vaporization, and melting
,”
J. Chem. Phys.
75
,
5097
5109
(
1981
).
38.
A. F.
Bakker
,
C.
Bruin
, and
H. J.
Hilhorst
, “
Orientational order at the two-dimensional melting transition
,”
Phys. Rev. Lett.
52
,
449
452
(
1984
).
39.
K. J.
Strandburg
,
J. A.
Zollweg
, and
G. V.
Chester
, “
Bond-angular order in two-dimensional Lennard-Jones and hard-disk systems
,”
Phys. Rev. B
30
,
2755
2759
(
1984
).
40.
A.
Hajibabaei
and
K. S.
Kim
, “
First-order and continuous melting transitions in two-dimensional Lennard-Jones systems and repulsive disks
,”
Phys. Rev. E
99
,
022145
(
2019
).
41.
J. J.
Alonso
and
J. F.
Fernández
, “
van der Waals loops and the melting transition in two dimensions
,”
Phys. Rev. E
59
,
2659
2663
(
1999
).
42.
Y.-W.
Li
and
M. P.
Ciamarra
, “
Phase behavior of Lennard-Jones particles in two dimensions
,”
Phys. Rev. E
102
,
062101
(
2020
).
43.
Y.-W.
Li
and
M. P.
Ciamarra
, “
Attraction tames two-dimensional melting: From continuous to discontinuous transitions
,”
Phys. Rev. Lett.
124
,
218002
(
2020
).
44.
E. N.
Tsiok
,
Y. D.
Fomin
, and
V. N.
Ryzhov
, “
Random pinning elucidates the nature of melting transition in two-dimensional core-softened potential system
,”
Physica A
490
,
819
827
(
2018
).
45.
E. A.
Gaiduk
,
Y. D.
Fomin
,
E. N.
Tsiok
, and
V. N.
Ryzhov
, “
The influence of random pinning on the melting scenario of two-dimensional soft-disk systems
,”
Mol. Phys.
117
,
2910
2919
(
2019
).
46.
Ó.
Toledano
,
M.
Pancorbo
,
J. E.
Alvarellos
, and
Ó.
Gálvez
, “
Melting in two-dimensional systems: Characterizing continuous and first-order transitions
,”
Phys. Rev. B
103
,
094107
(
2021
).
47.
A.
Ivlev
,
H.
Löwen
,
G.
Morfill
, and
C. P.
Royall
,
Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids
, Series in Soft Condensed Matter (
Word Scientific
,
Singapore
,
2012
).
48.
H.
Löwen
, “
Melting, freezing and colloidal suspensions
,”
Phys. Rep.
237
,
249
324
(
1994
).
49.
B.
Li
,
D.
Zhou
, and
Y.
Han
, “
Assembly and phase transitions of colloidal crystals
,”
Nat. Rev. Mater.
1
,
15011
(
2016
).
50.
A.
Stradner
and
P.
Schurtenberger
, “
Potential and limits of a colloid approach to protein solutions
,”
Soft Matter
16
,
307
323
(
2020
).
51.
A. M.
Alsayed
,
M. F.
Islam
,
J.
Zhang
,
P. J.
Collings
, and
A. G.
Yodh
, “
Premelting at defects within bulk colloidal crystals
,”
Science
309
,
1207
1210
(
2005
).
52.
J.
Taffs
,
S. R.
Williams
,
H.
Tanaka
, and
C. P.
Royall
, “
Structure and kinetics in the freezing of nearly hard spheres
,”
Soft Matter
9
,
297
305
(
2013
).
53.
K.
Zahn
,
R.
Lenke
, and
G.
Maret
, “
Two-stage melting of paramagnetic colloidal crystals in two dimensions
,”
Phys. Rev. Lett.
82
,
2721
2724
(
1999
).
54.
K.
Zahn
and
G.
Maret
, “
Dynamic criteria for melting in two dimensions
,”
Phys. Rev. Lett.
85
,
3656
3659
(
2000
).
55.
J.
Sprakel
,
A.
Zaccone
,
F.
Spaepen
,
P.
Schall
, and
D. A.
Weitz
, “
Direct observation of entropic stabilization of bcc crystals near melting
,”
Phys. Rev. Lett.
118
,
088003
(
2017
).
56.
D.
Paloli
,
P. S.
Mohanty
,
J. J.
Crassous
,
E.
Zaccarelli
, and
P.
Schurtenberger
, “
Fluid-solid transitions in soft-repulsive colloids
,”
Soft Matter
9
,
3000
(
2013
).
57.
Z.
Wang
,
F.
Wang
,
Y.
Peng
,
Z.
Zheng
, and
Y.
Han
, “
Imaging the homogeneous nucleation during the melting of superheated colloidal crystals
,”
Science
338
,
87
90
(
2012
).
58.
E. V.
Yakovlev
,
M.
Chaudhuri
,
N. P.
Kryuchkov
,
P. V.
Ovcharov
,
A. V.
Sapelkin
, and
S. O.
Yurchenko
, “
Experimental validation of interpolation method for pair correlations in model crystals
,”
J. Chem. Phys.
151
,
114502
(
2019
).
59.
N. P.
Kryuchkov
,
N. A.
Dmitryuk
,
W.
Li
,
P. V.
Ovcharov
,
Y.
Han
,
A. V.
Sapelkin
, and
S. O.
Yurchenko
, “
Mean-field model of melting in superheated crystals based on a single experimentally measurable order parameter
,”
Sci. Rep.
11
,
17963
(
2021
).
60.
C. P.
Royall
,
M. E.
Leunissen
,
A.-P.
Hynninen
,
M.
Dijkstra
, and
A.
van Blaaderen
, “
Re-entrant melting and freezing in a model system of charged colloids
,”
J. Chem. Phys.
124
,
244706
(
2006
).
61.
A.
Yethiraj
and
A.
van Blaaderen
, “
A colloidal model system with an interaction tunable from hard sphere to soft and dipolar
,”
Nature
421
,
513
517
(
2003
).
62.
Y.
Peng
,
F.
Wang
,
Z.
Wang
,
A. M.
Alsayed
,
Z.
Zhang
,
A. G.
Yodh
, and
Y.
Han
, “
Two-step nucleation mechanism in solid–solid phase transitions
,”
Nat. Mater.
14
,
101
108
(
2014
).
63.
C.
Patrick Royall
,
D. G. A. L.
Aarts
, and
H.
Tanaka
, “
Bridging length scales in colloidal liquids and interfaces from near-critical divergence to single particles
,”
Nat. Phys.
3
,
636
640
(
2007
).
64.
I.
Zhang
,
C. P.
Royall
,
M. A.
Faers
, and
P.
Bartlett
, “
Phase separation dynamics in colloid–polymer mixtures: The effect of interaction range
,”
Soft Matter
9
,
2076
(
2013
).
65.
B.
Li
,
X.
Xiao
,
S.
Wang
,
W.
Wen
, and
Z.
Wang
, “
Real-space mapping of the two-dimensional phase diagrams in attractive colloidal systems
,”
Phys. Rev. X
9
,
031032
(
2019
).
66.
H. N.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
(
Springer
,
The Netherlands
,
2011
).
67.
J. E.
Martin
and
A.
Snezhko
, “
Driving self-assembly and emergent dynamics in colloidal suspensions by time-dependent magnetic fields
,”
Rep. Prog. Phys.
76
,
126601
(
2013
).
68.
J.
Byrom
and
S. L.
Biswal
, “
Magnetic field directed assembly of two-dimensional fractal colloidal aggregates
,”
Soft Matter
9
,
9167
(
2013
).
69.
D.
Du
,
D.
Li
,
M.
Thakur
, and
S. L.
Biswal
, “
Generating an in situ tunable interaction potential for probing 2-D colloidal phase behavior
,”
Soft Matter
9
,
6867
(
2013
).
70.
D.
Du
,
M.
Doxastakis
,
E.
Hilou
, and
S. L.
Biswal
, “
Two-dimensional melting of colloids with long-range attractive interactions
,”
Soft Matter
13
,
1548
1553
(
2017
).
71.
E.
Hilou
,
D.
Du
,
S.
Kuei
, and
S. L.
Biswal
, “
Interfacial energetics of two-dimensional colloidal clusters generated with a tunable anharmonic interaction potential
,”
Phys. Rev. Mater.
2
,
025602
(
2018
).
72.
D. R. E.
Snoswell
,
C. L.
Bower
,
P.
Ivanov
,
M. J.
Cryan
,
J. G.
Rarity
, and
B.
Vincent
, “
Dynamic control of lattice spacing within colloidal crystals
,”
New J. Phys.
8
,
267
(
2006
).
73.
N.
Elsner
,
C. P.
Royall
,
B.
Vincent
, and
D. R. E.
Snoswell
, “
Simple models for two-dimensional tunable colloidal crystals in rotating ac electric fields
,”
J. Chem. Phys.
130
,
154901
(
2009
).
74.
J. J.
Juárez
,
B. G.
Liu
,
J.-Q.
Cui
, and
M. A.
Bevan
, “
kT-scale colloidal interactions in high-frequency inhomogeneous AC electric fields. II. Concentrated ensembles
,”
Langmuir
27
,
9219
9226
(
2011
).
75.
T. D.
Edwards
and
M. A.
Bevan
, “
Controlling colloidal particles with electric fields
,”
Langmuir
30
,
10793
10803
(
2014
).
76.
J. J.
Juárez
,
S. E.
Feicht
, and
M. A.
Bevan
, “
Electric field mediated assembly of three dimensional equilibrium colloidal crystals
,”
Soft Matter
8
,
94
103
(
2012
).
77.
E. V.
Yakovlev
,
K. A.
Komarov
,
K. I.
Zaytsev
,
N. P.
Kryuchkov
,
K. I.
Koshelev
,
A. K.
Zotov
,
D. A.
Shelestov
,
V. L.
Tolstoguzov
,
V. N.
Kurlov
,
A. V.
Ivlev
, and
S. O.
Yurchenko
, “
Tunable two-dimensional assembly of colloidal particles in rotating electric fields
,”
Sci. Rep.
7
,
13727
(
2017
).
78.
K. A.
Komarov
,
A. V.
Yarkov
, and
S. O.
Yurchenko
, “
Diagrammatic method for tunable interactions in colloidal suspensions in rotating electric or magnetic fields
,”
J. Chem. Phys.
151
,
244103
(
2019
).
79.
E. V.
Yakovlev
,
N. P.
Kryuchkov
,
S. A.
Korsakova
,
N. A.
Dmitryuk
,
P. V.
Ovcharov
,
M. M.
Andronic
,
I. A.
Rodionov
,
A. V.
Sapelkin
, and
S. O.
Yurchenko
, “
2D colloids in rotating electric fields: A laboratory of strong tunable three-body interactions
,”
J. Colloid Interface Sci.
608
,
564
(
2022
).
80.
K.
Müller
,
N.
Osterman
,
D.
Babič
,
C. N.
Likos
,
J.
Dobnikar
, and
A.
Nikoubashman
, “
Pattern formation and coarse-graining in two-dimensional colloids driven by multiaxial magnetic fields
,”
Langmuir
30
,
5088
5096
(
2014
).
81.
N.
Osterman
,
I.
Poberaj
,
J.
Dobnikar
,
D.
Frenkel
,
P.
Ziherl
, and
D.
Babić
, “
Field-induced self-assembly of suspended colloidal membranes
,”
Phys. Rev. Lett.
103
,
228301
(
2009
).
82.
A. T.
Pham
,
Y.
Zhuang
,
P.
Detwiler
,
J. E. S.
Socolar
,
P.
Charbonneau
, and
B. B.
Yellen
, “
Phase diagram and aggregation dynamics of a monolayer of paramagnetic colloids
,”
Phys. Rev. E
95
,
052607
(
2017
).
83.
K. A.
Komarov
,
N. P.
Kryuchkov
, and
S. O.
Yurchenko
, “
Tunable interactions between particles in conically rotating electric fields
,”
Soft Matter
14
,
9657
9674
(
2018
).
84.
K. A.
Komarov
and
S. O.
Yurchenko
, “
Colloids in rotating electric and magnetic fields: Designing tunable interactions with spatial field hodographs
,”
Soft Matter
16
,
8155
8168
(
2020
).
85.
K. A.
Komarov
,
V. N.
Mantsevich
, and
S. O.
Yurchenko
, “
Core–shell particles in rotating electric and magnetic fields: Designing tunable interactions via particle engineering
,”
J. Chem. Phys.
155
,
084903
(
2021
).
86.
K. A.
Komarov
and
S. O.
Yurchenko
, “
Diagrammatics of tunable interactions in anisotropic colloids in rotating electric or magnetic fields: New kind of dipole-like interactions
,”
J. Chem. Phys.
155
,
114107
(
2021
).
87.
P.
Minnhagen
, “
The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films
,”
Rev. Mod. Phys.
59
,
1001
1066
(
1987
).
88.
P. M.
Chaikin
and
T. C.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
1995
).
89.
P. V.
Ovcharov
,
N. P.
Kryuchkov
,
K. I.
Zaytsev
, and
S. O.
Yurchenko
, “
Particle-resolved phase identification in two-dimensional condensable systems
,”
J. Phys. Chem. C
121
,
26860
26868
(
2017
).
90.
E.
Luijten
and
H. W. J.
Blöte
, “
Boundary between long-range and short-range critical behavior in systems with algebraic interactions
,”
Phys. Rev. Lett.
89
,
025703
(
2002
).
91.
S. S.
Khali
,
D.
Chakraborty
, and
D.
Chaudhuri
, “
Two-step melting of the Weeks–Chandler–Anderson system in two dimensions
,”
Soft Matter
17
,
3473
3485
(
2021
).
92.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
2017
).
93.
You do not currently have access to this content.