We propose to use molecular picocavity ensembles as macroscopic coherent nonlinear optical devices enabled by nanoscale strong coupling. For a generic picocavity model that includes molecular and photonic disorder, we derive theoretical performance bounds for coherent cross-phase modulation signals using weak classical fields of different frequencies. We show that strong coupling of the picocavity vacua with a specific vibronic sideband in the molecular emission spectrum results in a significant variation of the effective refractive index of the metamaterial relative to a molecule-free scenario due to a vacuum-induced Autler–Townes effect. For a realistic molecular disorder model, we demonstrate that cross-phase modulation of optical fields as weak as 10 kW/cm2 is feasible using dilute ensembles of molecular picocavities at room temperature, provided that the confined vacuum is not resonantly driven by the external probe field. Our work paves the way for the development of plasmonic metamaterials that exploit strong coupling for optical state preparation and quantum control.

1.
F.
Benz
,
M. K.
Schmidt
,
A.
Dreismann
,
R.
Chikkaraddy
,
Y.
Zhang
,
A.
Demetriadou
,
C.
Carnegie
,
H.
Ohadi
,
B.
de Nijs
,
R.
Esteban
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Single-molecule optomechanics in picocavities
,”
Science
354
(
6313
),
726
729
(
2016
).
2.
C.
Carnegie
,
J.
Griffiths
,
B.
de Nijs
,
C.
Readman
,
R.
Chikkaraddy
,
W. M.
Deacon
,
Y.
Zhang
,
I.
Szabó
,
E.
Rosta
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries
,”
J. Phys. Chem. Lett.
9
(
24
),
7146
7151
(
2018
).
3.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
(
7610
),
127
130
(
2016
).
4.
R.
Chikkaraddy
,
V. A.
Turek
,
N.
Kongsuwan
,
F.
Benz
,
C.
Carnegie
,
T.
van de Goor
,
B.
de Nijs
,
A.
Demetriadou
,
O.
Hess
,
U. F.
Keyser
, and
J. J.
Baumberg
, “
Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami
,”
Nano Lett.
18
(
1
),
405
411
(
2018
).
5.
T. W.
Ebbesen
, “
Hybrid light-matter states in a molecular and material science perspective
,”
Acc. Chem. Res.
49
,
2403
2412
(
2016
).
6.
F.
Herrera
and
J.
Owrutsky
, “
Molecular polaritons for controlling chemistry with quantum optics
,”
J. Chem. Phys.
152
(
10
),
100902
(
2020
).
7.
Y.
Zhang
,
R.
Esteban
,
R. A.
Boto
,
M.
Urbieta
,
X.
Arrieta
,
C.
Shan
,
S.
Li
,
J. J.
Baumberg
, and
J.
Aizpurua
, “
Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the single plasmonic mode
,”
Nanoscale
13
,
1938
1954
(
2021
).
8.
A.
Delga
,
J.
Feist
,
J.
Bravo-Abad
, and
F. J.
Garcia-Vidal
, “
Theory of strong coupling between quantum emitters and localized surface plasmons
,”
J. Opt.
16
(
11
),
114018
(
2014
).
9.
T.
Neuman
and
J.
Aizpurua
, “
Origin of the asymmetric light emission from molecular exciton-polaritons
,”
Optica
5
(
10
),
1247
1255
(
2018
).
10.
T.
Neuman
,
J.
Aizpurua
, and
R.
Esteban
, “
Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems
,”
Nanophotonics
9
(
2
),
295
308
(
2020
).
11.
J.
Feist
,
A. I.
Fernández-Domínguez
, and
F. J.
García-Vidal
, “
Macroscopic QED for quantum nanophotonics: Emitter-centered modes as a minimal basis for multiemitter problems
,”
Nanophotonics
10
(
1
),
477
489
(
2021
).
12.
T.
Schmid
,
L.
Opilik
,
C.
Blum
, and
R.
Zenobi
, “
Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review
,”
Angew. Chem., Int. Ed.
52
(
23
),
5940
5954
(
2013
).
13.
M. S.
Tame
,
K. R.
McEnery
,
Ş. K.
Özdemir
,
J.
Lee
,
S. A.
Maier
, and
M. S.
Kim
, “
Quantum plasmonics
,”
Nat. Phys.
9
(
6
),
329
340
(
2013
).
14.
V. M.
Agranovich
and
G. C.
La Rocca
, “
Electronic excitations in organic microcavities with strong light–matter coupling
,”
Solid State Commun.
135
(
9–10
),
544
553
(
2005
), Fundamental optical and quantum effects in condensed matter.
15.
J. R.
Tischler
 et al., “
Solid state cavity QED: Strong coupling in organic thin films
,”
Org. Electron.
8
(
2-3
),
94
113
(
2007
).
16.
S.
Kéna-Cohen
,
M.
Davanço
, and
S. R.
Forrest
, “
Strong exciton-photon coupling in an organic single crystal microcavity
,”
Phys. Rev. Lett.
101
,
116401
(
2008
).
17.
F.
Herrera
and
F. C.
Spano
, “
Absorption and photoluminescence in organic cavity QED
,”
Phys. Rev. A
95
,
053867
(
2017
).
18.
F.
Herrera
and
F. C.
Spano
, “
Dark vibronic polaritons and the spectroscopy of organic microcavities
,”
Phys. Rev. Lett.
118
,
223601
(
2017
).
19.
M.
Mazzeo
 et al., “
Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes
,”
Appl. Phys. Lett.
104
(
23
),
233303
(
2014
).
20.
S.
Gambino
 et al., “
Ultrastrong light-matter coupling in electroluminescent organic microcavities
,”
Appl. Mater. Today
1
(
1
),
33
36
(
2015
).
21.
T.
Schwartz
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
, “
Reversible switching of ultrastrong light-molecule coupling
,”
Phys. Rev. Lett.
106
,
196405
(
2011
).
22.
S.
Kéna-Cohen
,
S. A.
Maier
, and
D. D. C.
Bradley
, “
Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities
,”
Adv. Opt. Mater.
1
(
11
),
827
833
(
2013
).
23.
P. A.
Hobson
,
W. L.
Barnes
,
D. G.
Lidzey
,
G. A.
Gehring
,
D. M.
Whittaker
,
M. S.
Skolnick
, and
S.
Walker
, “
Strong exciton-photon coupling in a low-Q all-metal mirror microcavity
,”
Appl. Phys. Lett.
81
(
19
),
3519
3521
(
2002
).
24.
J.
Feist
and
F. J.
Garcia-Vidal
, “
Extraordinary exciton conductance induced by strong coupling
,”
Phys. Rev. Lett.
114
,
196402
(
2015
).
25.
J.
Schachenmayer
,
C.
Genes
,
E.
Tignone
, and
G.
Pupillo
, “
Cavity-enhanced transport of excitons
,”
Phys. Rev. Lett.
114
,
196403
(
2015
).
26.
J.
Yuen-Zhou
,
S. K.
Saikin
,
T.
Zhu
,
M. C.
Onbasli
,
C. A.
Ross
,
V.
Bulovic
, and
M. A.
Baldo
, “
Plexciton Dirac points and topological modes
,”
Nat. Commun.
7
,
11783
(
2016
).
27.
D.
Hagenmüller
,
J.
Schachenmayer
,
S.
Schütz
,
C.
Genes
, and
G.
Pupillo
, “
Cavity-enhanced transport of charge
,”
Phys. Rev. Lett.
119
,
223601
(
2017
).
28.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
, “
Modifying chemical landscapes by coupling to vacuum fields
,”
Angew. Chem., Int. Ed.
51
(
7
),
1592
1596
(
2012
).
29.
F.
Herrera
and
F. C.
Spano
, “
Cavity-controlled chemistry in molecular ensembles
,”
Phys. Rev. Lett.
116
,
238301
(
2016
).
30.
F.
Herrera
 et al., “
Quantum nonlinear optics with polar J-aggregates in microcavities
,”
J. Phys. Chem. Lett.
5
(
21
),
3708
3715
(
2014
).
31.
F.
Barachati
,
J.
Simon
,
Y. A.
Getmanenko
,
S.
Barlow
,
S. R.
Marder
, and
S.
Kéna-Cohen
, “
Tunable third-harmonic generation from polaritons in the ultrastrong coupling regime
,”
ACS Photonics
5
(
1
),
119
125
(
2018
).
32.
K. S.
Daskalakis
,
S. A.
Maier
, and
S.
Kéna-Cohen
, “
Polariton condensation in organic semiconductors
,” in
Quantum Plasmonics
(
Springer International Publishing
,
2017
), pp.
151
163
.
33.
G.
Lerario
,
A.
Fieramosca
,
F.
Barachati
,
D.
Ballarini
,
K. S.
Daskalakis
,
L.
Dominici
,
M.
De Giorgi
,
S. A.
Maier
,
G.
Gigli
, and
S.
Kéna-Cohen
, “
Room-temperature superfluidity in a polariton condensate
,”
Nat. Phys.
13
,
837
841
(
2017
).
34.
B.
Zhu
,
J.
Schachenmayer
,
M.
Xu
,
F.
Herrera
,
J. G.
Restrepo
,
M. J.
Holland
, and
A. M.
Rey
, “
Synchronization of interacting quantum dipoles
,”
New J. Phys.
17
(
8
),
083063
(
2015
).
35.
D. G.
Baranov
,
M.
Wersäll
,
J.
Cuadra
,
T. J.
Antosiewicz
, and
T.
Shegai
, “
Novel nanostructures and materials for strong light–matter interactions
,”
ACS Photonics
5
,
24
42
(
2018
).
36.
E. A.
Muller
,
B.
Pollard
,
H. A.
Bechtel
,
R.
Adato
,
D.
Etezadi
,
H.
Altug
, and
M. B.
Raschke
, “
Nanoimaging and control of molecular vibrations through electromagnetically induced scattering reaching the strong coupling regime
,”
ACS Photonics
5
(
9
),
3594
3600
(
2018
).
37.
S.
Felicetti
,
J.
Fregoni
,
T.
Schnappinger
,
S.
Reiter
,
R.
de Vivie-Riedle
, and
J.
Feist
, “
Photoprotecting uracil by coupling with lossy nanocavities
,”
J. Phys. Chem. Lett.
11
(
20
),
8810
8818
(
2020
).
38.
J.
Fregoni
,
G.
Granucci
,
E.
Coccia
,
M.
Persico
, and
S.
Corni
, “
Manipulating azobenzene photoisomerization through strong light–molecule coupling
,”
Nat. Commun.
9
(
1
),
4688
4689
(
2018
).
39.
N.
Behr
and
M. B.
Raschke
, “
Optical antenna properties of scanning probe tips
,”
J. Phys. Chem. C
112
(
10
),
3766
3773
(
2008
).
40.
M. A.
May
,
D.
Fialkow
,
T.
Wu
,
K.-D.
Park
,
H.
Leng
,
J. A.
Kropp
,
T.
Gougousi
,
P.
Lalanne
,
M.
Pelton
, and
M. B.
Raschke
, “
Nano-cavity QED with tunable nano-tip interaction
,”
Adv. Quantum Technol.
3
(
2
),
1900087
(
2020
).
41.
B.
Metzger
,
E.
Muller
,
J.
Nishida
,
B.
Pollard
,
M.
Hentschel
, and
M. B.
Raschke
, “
Purcell-enhanced spontaneous emission of molecular vibrations
,”
Phys. Rev. Lett.
123
,
153001
(
2019
).
42.
M.
Litinskaya
and
F.
Herrera
, “
Vacuum-enhanced optical nonlinearities with disordered molecular photoswitches
,”
Phys. Rev. B
99
,
041107
(
2019
).
43.
F. C.
Spano
and
H.
Yamagata
, “
Vibronic coupling in J-aggregates and beyond: A direct means of determining the exciton coherence length from the photoluminescence spectrum
,”
J Phys. Chem. B
115
(
18
),
5133
5143
(
2011
).
44.
J. D.
Bhawalkar
,
G. S.
He
, and
P. N.
Prasad
, “
Nonlinear multiphoton processes in organic and polymeric materials
,”
Rep. Prog. Phys.
59
(
9
),
1041
(
1996
).
45.
J. B.
Lassiter
,
F.
McGuire
,
J. J.
Mock
,
C.
Ciracì
,
R. T.
Hill
,
B. J.
Wiley
,
A.
Chilkoti
, and
D. R.
Smith
, “
Plasmonic waveguide modes of film-coupled metallic nanocubes
,”
Nano Lett.
13
(
12
),
5866
5872
(
2013
).
46.
K.
Esashika
,
R.
Ishii
,
S.
Tokihiro
, and
T.
Saiki
, “
Simple and rapid method for homogeneous dimer formation of gold nanoparticles in a bulk suspension based on van der Waals interactions between alkyl chains
,”
Opt. Mater. Express
9
(
4
),
1667
1677
(
2019
).
47.
P. M.
Jais
,
D. B.
Murray
,
R.
Merlin
, and
A. V.
Bragas
, “
Metal nanoparticle ensembles: Tunable laser pulses distinguish monomer from dimer vibrations
,”
Nano Lett.
11
(
9
),
3685
3689
(
2011
).
48.
D.
Babonneau
,
D. K.
Diop
,
L.
Simonot
,
B.
Lamongie
,
N.
Blanc
,
N.
Boudet
,
F.
Vocanson
, and
N.
Destouches
, “
Real-time investigations of structural and optical changes in photochromic Ag/TiO2 nanocomposite thin films under laser irradiation
,”
Nano Futures
2
(
1
),
015002
(
2018
).
49.
F. C.
Spano
, “
The spectral signatures of Frenkel polarons in H- and J-aggregates
,”
Acc. Chem. Res.
43
(
3
),
429
439
(
2010
).
50.
A.
Sihvola
,
Electromagnetic Mixing Formulas and Applications
, Electromagnetic Waves (
Institution of Engineering and Technology
,
1999
).
51.
D. E.
Aspnes
, “
Plasmonics and effective-medium theories
,”
Thin Solid Films
519
(
9
),
2571
2574
(
2011
), 5th International Conference on Spectroscopic Ellipsometry (ICSE-V).
52.
V. A.
Markel
, “
Introduction to the Maxwell Garnett approximation: Tutorial
,”
J. Opt. Soc. Am. A
33
(
7
),
1244
1256
(
2016
).
53.
K. M.
Czajkowski
,
D.
Świtlik
,
C.
Langhammer
, and
T. J.
Antosiewicz
, “
Effective optical properties of inhomogeneously distributed nanoobjects in strong field gradients of nanoplasmonic sensors
,”
Plasmonics
13
(
6
),
2423
2434
(
2018
).
54.
I. M.
Lifshitz
and
L. N.
Rozenzweig
, “
On elastic properties of polycrystals
,”
Zh. Exp. Teor. Fiz.
16
,
967
(1946).
55.
I. M.
Lifshitz
,
M. I.
Kaganov
, and
V. M.
Tzukernic
, “
Propagation of electromagnetic vibrations in non-uniform anisotropic media
,”
Uch. Zap. KhGU
35/2
(
2
),
41
54
(1950); also available in selected works of I. M. Lifshitz (Nauka, Moscow, 1987), p. 337.
56.
M.
Inna Kaganova
, “
On calculation of effective conductivity of inhomogeneous metals
,”
Phys. Lett. A
312
(
1
),
108
118
(
2003
).
57.
I. M.
Kaganova
, “
Theory of surface polaritons in polycrystals
,”
Phys. Rev. B
51
,
5333
5344
(
1995
).
58.
M. L.
Litinskaia
and
I. M.
Kaganova
, “
Motional narrowing in a microcavity: Contribution to the lower polariton linewidth
,”
Phys. Lett. A
275
(
4
),
292
298
(
2000
).
59.
J.
Fojt
,
T. P.
Rossi
,
T. J.
Antosiewicz
,
M.
Kuisma
, and
P.
Erhart
, “
Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling
,”
J. Chem. Phys.
154
(
9
),
094109
(
2021
).
60.
Y.
Xu
,
P.
Bai
,
X.
Zhou
,
Y.
Akimov
,
C. E.
Png
,
L. K.
Ang
,
W.
Knoll
, and
L.
Wu
, “
Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth
,”
Adv. Opt. Mater.
7
(
9
),
1801433
(
2019
).
61.
M.
Papaioannou
,
E.
Plum
,
J.
Valente
,
E. T. F.
Rogers
, and
N. I.
Zheludev
, “
Two-dimensional control of light with light on metasurfaces
,”
Light: Sci. Appl.
5
(
4
),
e16070
(
2016
).
62.
R.
Kevin Kessing
,
P.-Y.
Yang
,
S. R.
Manmana
, and
J.
Cao
, “
Long-range non-equilibrium coherent tunneling induced by fractional vibronic resonances
,” arXiv:2111.06137 (
2021
).
63.
N. B.
Phillips
,
A. V.
Gorshkov
, and
I.
Novikova
, “
Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing
,”
Phys. Rev. A
83
,
063823
(
2011
).
64.
G.
Engelhardt
and
J.
Cao
, “
Dynamical symmetries and symmetry-protected selection rules in periodically driven quantum systems
,”
Phys. Rev. Lett.
126
,
090601
(
2021
).
65.
M.
Fleischhauer
,
A.
Imamoglu
, and
J. P.
Marangos
, “
Electromagnetically induced transparency: Optics in coherent media
,”
Rev. Mod. Phys.
77
,
633
673
(
2005
).
66.
J.
Casellas
,
M. J.
Bearpark
, and
M.
Reguero
, “
Excited-state decay in the photoisomerisation of azobenzene: A new balance between mechanisms
,”
ChemPhysChem
17
(
19
),
3068
3079
(
2016
).
67.
S. A.
Maier
, “
Plasmonic field enhancement and SERS in the effective mode volume picture
,”
Opt. Express
14
(
5
),
1957
1964
(
2006
).
68.
B.
Pollard
,
E. A.
Muller
,
K.
Hinrichs
, and
M. B.
Raschke
, “
Vibrational nano-spectroscopic imaging correlating structure with intermolecular coupling and dynamics
,”
Nat. Commun.
5
(
1
),
3587
(
2014
).
69.
S. M.
Vlaming
,
V. A.
Malyshev
, and
J.
Knoester
, “
Localization properties of one-dimensional Frenkel excitons: Gaussian versus Lorentzian diagonal disorder
,”
Phys. Rev. B
79
,
205121
(
2009
).
70.
G.
Engelhardt
and
J.
Cao
, “
Unusual dynamical properties of disordered polaritons in micocavities
,” arXiv:2112.04060 (
2021
).
71.
D.
Wang
,
H.
Kelkar
,
D.
Martin-Cano
,
U.
Tobias
,
S.
Götzinger
, and
V.
Sandoghdar
, “
Coherent coupling of a single molecule to a scanning Fabry-Perot microcavity
,”
Phys. Rev. X
7
(
2
),
021014
(
2017
).
72.
Y.
Kobayashi
,
K.
Mutoh
, and
J.
Abe
, “
Stepwise two-photon absorption processes utilizing photochromic reactions
,”
J. Photochem. Photobiol., C
34
,
2
28
(
2018
).
73.
M.
Rumi
and
J. W.
Perry
, “
Two-photon absorption: An overview of measurements and principles
,”
Adv. Opt. Photonics
2
(
4
),
451
518
(
2010
).
74.
K.
Svoboda
and
R.
Yasuda
, “
Principles of two-photon excitation microscopy and its applications to neuroscience
,”
Neuron
50
(
6
),
823
839
(
2006
).
75.
G.
Langer
,
K.-D.
Bouchal
,
H.
Grün
,
P.
Burgholzer
, and
T.
Berer
, “
Two-photon absorption-induced photoacoustic imaging of Rhodamine B dyed polyethylene spheres using a femtosecond laser
,”
Opt. Express
21
(
19
),
22410
22422
(
2013
).
76.
Y.
Gao
,
Q.
Gan
,
Z.
Xin
,
X.
Cheng
, and
F. J.
Bartoli
, “
Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing
,”
ACS Nano
5
(
12
),
9836
9844
(
2011
).
You do not currently have access to this content.