The emission of an Auger electron is the predominant relaxation mechanism of core-vacant states in molecules composed of light nuclei. In this non-radiative decay process, one valence electron fills the core vacancy, while a second valence electron is emitted into the ionization continuum. Because of this coupling to the continuum, core-vacant states represent electronic resonances that can be tackled with standard quantum-chemical methods only if they are approximated as bound states, meaning that Auger decay is neglected. Here, we present an approach to compute Auger decay rates of core-vacant states from coupled-cluster and equation-of-motion coupled-cluster wave functions combined with complex scaling of the Hamiltonian or, alternatively, complex-scaled basis functions. Through energy decomposition analysis, we illustrate how complex-scaled methods are capable of describing the coupling to the ionization continuum without the need to model the wave function of the Auger electron explicitly. In addition, we introduce in this work several approaches for the determination of partial decay widths and Auger branching ratios from complex-scaled coupled-cluster wave functions. We demonstrate the capabilities of our new approach by computations on core-ionized states of neon, water, dinitrogen, and benzene. Coupled-cluster and equation-of-motion coupled-cluster theory in the singles and doubles approximation both deliver excellent results for total decay widths, whereas we find partial widths more straightforward to evaluate with the former method.

1.
B. K.
Agarwal
,
X-Ray Spectroscopy: An Introduction
(
Springer
,
2013
).
2.
P.
Norman
and
A.
Dreuw
, “
Simulating x-ray spectroscopies and calculating core-excited states of molecules
,”
Chem. Rev.
118
,
7208
7248
(
2018
).
3.
P.
Zimmermann
,
S.
Peredkov
,
P. M.
Abdala
,
S.
DeBeer
,
M.
Tromp
,
C.
Müller
, and
J. A.
van Bokhoven
, “
Modern X-ray spectroscopy: XAS and XES in the laboratory
,”
Coord. Chem. Rev.
423
,
213466
(
2020
).
4.
L.
Meitner
, “
Über die β-strahl-spektra und ihren zusammenhang mit der γ-strahlung
,”
Z. Phys.
11
,
35
(
1922
).
5.
P.
Auger
, “
Sur les rayons β secondaires produits dans un gaz par des rayons X
,”
C. R. Acad. Sci. F
177
,
169
(
1923
).
6.
G. S.
Brown
,
M. H.
Chen
,
B.
Crasemann
, and
G. E.
Ice
, “
Observation of the Auger resonant Raman effect
,”
Phys. Rev. Lett.
45
,
1937
1940
(
1980
).
7.
G. B.
Armen
,
H.
Aksela
,
T.
Åberg
, and
S.
Aksela
, “
The resonant Auger effect
,”
J. Phys. B: At., Mol. Opt. Phys.
33
,
R49
R92
(
2000
).
8.
T. A.
Carlson
and
M. O.
Krause
, “
Experimental evidence for double electron emission in an Auger process
,”
Phys. Rev. Lett.
14
,
390
392
(
1965
).
9.
A.
Müller
,
A.
Borovik
,
T.
Buhr
,
J.
Hellhund
,
K.
Holste
,
A. L. D.
Kilcoyne
,
S.
Klumpp
,
M.
Martins
,
S.
Ricz
,
J.
Viefhaus
, and
S.
Schippers
, “
Observation of a four-electron Auger process in near-k-edge photoionization of singly charged carbon ions
,”
Phys. Rev. Lett.
114
,
013002
(
2015
).
10.
I.
Lee
,
R.
Wehlitz
,
U.
Becker
, and
M. Ya.
Amusia
, “
Evidence for a new class of many-electron Auger transitions in atoms
,”
J. Phys. B: At., Mol. Opt. Phys.
26
,
L41
L45
(
1993
).
11.
R.
Feifel
,
J. H. D.
Eland
,
R. J.
Squibb
,
M.
Mucke
,
S.
Zagorodskikh
,
P.
Linusson
,
F.
Tarantelli
,
P.
Kolorenč
, and
V.
Averbukh
, “
Ultrafast molecular three-electron Auger decay
,”
Phys. Rev. Lett.
116
,
073001
(
2016
).
12.
L. S.
Cederbaum
,
J.
Zobeley
, and
F.
Tarantelli
, “
Giant intermolecular decay and fragmentation of clusters
,”
Phys. Rev. Lett.
79
,
4778
4781
(
1997
).
13.
T.
Jahnke
,
U.
Hergenhahn
,
B.
Winter
,
R.
Dörner
,
U.
Frühling
,
P. V.
Demekhin
,
K.
Gokhberg
,
L. S.
Cederbaum
,
A.
Ehresmann
,
A.
Knie
, and
A.
Dreuw
, “
Interatomic and intermolecular Coulombic decay
,”
Chem. Rev.
120
,
11295
11369
(
2020
).
14.
J.
Zobeley
,
R.
Santra
, and
L. S.
Cederbaum
, “
Electronic decay in weakly bound heteroclusters: Energy transfer versus electron transfer
,”
J. Chem. Phys.
115
,
5076
5088
(
2001
).
15.
R.
Manne
and
H.
Ågren
, “
Auger transition amplitudes from general many-electron wavefunctions
,”
Chem. Phys.
93
,
201
208
(
1985
).
16.
K.
Zähringer
,
H.-D.
Meyer
, and
L. S.
Cederbaum
, “
Molecular scattering wave functions for Auger decay rates: The Auger spectrum of hydrogen fluoride
,”
Phys. Rev. A
45
,
318
328
(
1992
).
17.
K.
Zähringer
,
H.-D.
Meyer
, and
L. S.
Cederbaum
, “
Angularly resolved Auger rates of LiF and HF
,”
Phys. Rev. A
46
,
5643
5652
(
1992
).
18.
F.
Tarantelli
,
A.
Sgamellotti
, and
L. S.
Cederbaum
, “
The calculation of molecular Auger spectra
,”
J. Electron Spectrosc. Relat. Phenom.
68
,
297
312
(
1994
).
19.
V. G.
Yarzhemsky
and
A.
Sgamellotti
, “
Auger rates of second-row atoms calculated by many-body perturbation theory
,”
J. Electron Spectrosc. Relat. Phenom.
125
,
13
24
(
2002
).
20.
P.
Kolorenc
and
V.
Averbukh
, “
K-shell Auger lifetime variation in doubly ionized Ne and first row hydrides
,”
J. Chem. Phys.
135
,
134314
(
2011
).
21.
L.
Inhester
,
C. F.
Burmeister
,
G.
Groenhof
, and
H.
Grubmüller
, “
Auger spectrum of a water molecule after single and double core ionization
,”
J. Chem. Phys.
136
,
144304
(
2012
).
22.
L.
Inhester
,
C. F.
Burmeister
,
G.
Groenhof
, and
H.
Grubmüller
, “
Erratum: ‘Auger spectrum of a water molecule after single and double core ionization’ [J. Chem. Phys. 136, 144304 (2012)]
,”
J. Chem. Phys.
141
,
069904
(
2014
).
23.
W.
Skomorowski
and
A. I.
Krylov
, “
Feshbach–Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. I. Theory and implementation
,”
J. Chem. Phys.
154
,
084124
(
2021
).
24.
W.
Skomorowski
and
A. I.
Krylov
, “
Feshbach–Fano approach for calculation of Auger decay rates using equation-of-motion coupled-cluster wave functions. II. Numerical examples and benchmarks
,”
J. Chem. Phys.
154
,
084125
(
2021
).
25.
N.
Moiseyev
,
Non-Hermitian Quantum Mechanics
(
Cambridge University Press
,
2011
).
26.
T.-C.
Jagau
,
K. B.
Bravaya
, and
A. I.
Krylov
, “
Extending quantum chemistry of bound states to electronic resonances
,”
Annu. Rev. Phys. Chem.
68
,
525
553
(
2017
).
27.
L. S.
Cederbaum
,
W.
Domcke
, and
J.
Schirmer
, “
Many-body theory of core holes
,”
Phys. Rev. A
22
,
206
222
(
1980
).
28.
S.
Coriani
and
H.
Koch
, “
Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework
,”
J. Chem. Phys.
143
,
181103
(
2015
).
29.
M. L.
Vidal
,
X.
Feng
,
E.
Epifanovsky
,
A. I.
Krylov
, and
S.
Coriani
, “
New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states
,”
J. Chem. Theory Comput.
15
,
3117
3133
(
2019
).
30.
T.
Fransson
,
I. E.
Brumboiu
,
M. L.
Vidal
,
P.
Norman
,
S.
Coriani
, and
A.
Dreuw
, “
XABOOM: An X-ray absorption benchmark of organic molecules based on carbon, nitrogen, and oxygen 1s → π* transitions
,”
J. Chem. Theory Comput.
17
,
1618
1637
(
2021
).
31.
J.
García
,
T. R.
Kallman
,
M.
Witthoeft
,
E.
Behar
,
C.
Mendoza
,
P.
Palmeri
,
P.
Quinet
,
M. A.
Bautista
, and
M.
Klapisch
, “
Nitrogen K-shell photoabsorption
,”
Astrophys. J., Suppl. Ser.
185
,
477
485
(
2009
).
32.
T. W.
Gorczyca
, “
Auger decay of the photoexcited 1s−1np Rydberg series in neon
,”
Phys. Rev. A
61
,
024702
(
2000
).
33.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Phys. Rev.
124
,
1866
1878
(
1961
).
34.
H.
Feshbach
, “
A unified theory of nuclear reactions. II
,”
Ann. Phys.
19
,
287
313
(
1962
).
35.
P. W.
Langhoff
and
C. T.
Corcoran
, “
Stieltjes imaging of photoabsorption and dispersion profiles
,”
J. Chem. Phys.
61
,
146
159
(
1974
).
36.
V.
Carravetta
and
H.
gren
, “
Stieltjes imaging method for molecular Auger transition rates: Application to the Auger spectrum of water
,”
Phys. Rev. A
35
,
1022
1032
(
1987
).
37.
V.
Averbukh
and
L. S.
Cederbaum
, “
Ab initio calculation of interatomic decay rates by a combination of the Fano ansatz, Green’s-function methods, and the Stieltjes imaging technique
,”
J. Chem. Phys.
123
,
204107
(
2005
).
38.
P.
Kolorenč
and
V.
Averbukh
, “
Fano-ADC(2,2) method for electronic decay rates
,”
J. Chem. Phys.
152
,
214107
(
2020
).
39.
J.
Schirmer
, “
Beyond the random-phase approximation: A new approximation scheme for the polarization propagator
,”
Phys. Rev. A
26
,
2395
2416
(
1982
).
40.
J.
Aguilar
and
J. M.
Combes
, “
A class of analytic perturbations for one-body Schrödinger Hamiltonians
,”
Commun. Math. Phys.
22
,
269
279
(
1971
).
41.
E.
Balslev
and
J. M.
Combes
, “
Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions
,”
Commun. Math. Phys.
22
,
280
294
(
1971
).
42.
C. W.
McCurdy
and
T. N.
Rescigno
, “
Extension of the method of complex basis functions to molecular resonances
,”
Phys. Rev. Lett.
41
,
1364
1368
(
1978
).
43.
N.
Moiseyev
and
C.
Corcoran
, “
Autoionizing states of H2 and H2 using the complex-scaling method
,”
Phys. Rev. A
20
,
814
817
(
1979
).
44.
K. B.
Bravaya
,
D.
Zuev
,
E.
Epifanovsky
, and
A. I.
Krylov
, “
Complex-scaled equation-of-motion coupled-cluster method with single and double substitutions for autoionizing excited states: Theory, implementation, and examples
,”
J. Chem. Phys.
138
,
124106
(
2013
).
45.
T.-C.
Jagau
,
D.
Zuev
,
K. B.
Bravaya
,
E.
Epifanovsky
, and
A. I.
Krylov
, “
A fresh look at resonances and complex absorbing potentials: Density matrix-based approach
,”
J. Phys. Chem. Lett.
5
,
310
315
(
2014
).
46.
D.
Zuev
,
T.-C.
Jagau
,
K. B.
Bravaya
,
E.
Epifanovsky
,
Y.
Shao
,
E.
Sundstrom
,
M.
Head-Gordon
, and
A. I.
Krylov
, “
Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks
,”
J. Chem. Phys.
141
,
024102
(
2014
).
47.
A. F.
White
,
M.
Head-Gordon
, and
C. W.
McCurdy
, “
Complex basis functions revisited: Implementation with applications to carbon tetrafluoride and aromatic N-containing heterocycles within the static-exchange approximation
,”
J. Chem. Phys.
142
,
054103
(
2015
).
48.
A. F.
White
,
C. W.
McCurdy
, and
M.
Head-Gordon
, “
Restricted and unrestricted non-Hermitian Hartree-Fock: Theory, practical considerations, and applications to metastable molecular anions
,”
J. Chem. Phys.
143
,
074103
(
2015
).
49.
A. F.
White
,
E.
Epifanovsky
,
C. W.
McCurdy
, and
M.
Head-Gordon
, “
Second order Møller-Plesset and coupled cluster singles and doubles methods with complex basis functions for resonances in electron-molecule scattering
,”
J. Chem. Phys.
146
,
234107
(
2017
).
50.
N.
Moiseyev
,
P. R.
Certain
, and
F.
Weinhold
, “
Resonance properties of complex-rotated Hamiltonians
,”
Mol. Phys.
36
,
1613
1630
(
1978
).
51.
S. B.
Zhang
and
D. L.
Yeager
, “
A complex scaled multi-reference configuration interaction method to study Li and Li-like cations (Be, B, C, N, O) Auger resonances 1s2s22S and 1s(2s2p 3Po) 2Po
,”
J. Mol. Struct.
1023
,
96
100
(
2012
).
52.
S. B.
Zhang
and
D. L.
Yeager
, “
Complex-scaled multireference configuration-interaction method to study Be and Be-like cations’ (B, C, N, O, Mg) Auger resonances 1s2s22p 1,3Po
,”
Phys. Rev. A
85
,
032515
(
2012
).
53.
Y.-G.
Peng
,
Y.
Wu
,
L.-F.
Zhu
,
S. B.
Zhang
,
J.-G.
Wang
,
H.-P.
Liebermann
, and
R. J.
Buenker
, “
Complex multireference configuration interaction calculations for the K-vacancy Auger states of Nq+ (q = 2–5) ions
,”
J. Chem. Phys.
144
,
054306
(
2016
).
54.
T.-C.
Jagau
, “
Coupled-cluster treatment of molecular strong-field ionization
,”
J. Chem. Phys.
148
,
204102
(
2018
).
55.
T. H.
Thompson
,
C.
Ochsenfeld
, and
T.-C.
Jagau
, “
A Schwarz inequality for complex basis function methods in non-Hermitian quantum chemistry
,”
J. Chem. Phys.
151
,
184104
(
2019
).
56.
M.
Hernández Vera
and
T.-C.
Jagau
, “
Resolution-of-the-identity approximation for complex-scaled basis functions
,”
J. Chem. Phys.
151
,
111101
(
2019
).
57.
M.
Hernández Vera
and
T.-C.
Jagau
, “
Resolution-of-the-identity second-order Møller–Plesset perturbation theory with complex basis functions: Benchmark calculations and applications to strong-field ionization of polyacenes
,”
J. Chem. Phys.
152
,
174103
(
2020
).
58.
A.
Ghosh
,
S.
Pal
, and
N.
Vaval
, “
Study of interatomic Coulombic decay of Ne(H2O)n (n = 1, 3) clusters using equation-of-motion coupled-cluster method
,”
J. Chem. Phys.
139
,
064112
(
2013
).
59.
A.
Ghosh
,
S.
Pal
, and
N.
Vaval
, “
Lifetime of inner-shell hole states of Ar (2p) and Kr (3d) using equation-of-motion coupled cluster method
,”
J. Chem. Phys.
143
,
024305
(
2015
).
60.
A.
Ghosh
,
N.
Vaval
, and
S.
Pal
, “
Auger decay rates of core hole states using equation of motion coupled cluster method
,”
Chem. Phys.
482
,
160
164
(
2017
).
61.
N.
Moiseyev
, “
Derivations of universal exact complex absorption potentials by the generalized complex coordinate method
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
1431
1441
(
1998
).
62.
U. V.
Riss
and
H.-D.
Meyer
, “
Calculation of resonance energies and widths using the complex absorbing potential method
,”
J. Phys. B: At., Mol. Opt. Phys.
26
,
4503
4536
(
1993
).
63.
U. V.
Riss
and
H.-D.
Meyer
, “
The transformative complex absorbing potential method: A bridge between complex absorbing potentials and smooth exterior scaling
,”
J. Phys. B: At., Mol. Opt. Phys.
31
,
2279
2304
(
1998
).
64.
J.
Čížek
, “
On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods
,”
J. Chem. Phys.
45
,
4256
4266
(
1966
).
65.
J.
Čížek
, “
On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules
,”
Adv. Chem. Phys.
14
,
35
89
(
1969
).
66.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
67.
K.
Emrich
, “
An extension of the coupled cluster formalism to excited states (I)
,”
Nucl. Phys. A
351
,
379
396
(
1981
).
68.
H.
Sekino
and
R. J.
Bartlett
, “
A linear response, coupled-cluster theory for excitation energy
,”
Int. J. Quantum Chem.
26
,
255
265
(
1984
).
69.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
70.
M.
Nooijen
and
J. G.
Snijders
, “
Coupled cluster Green’s function method: Working equations and applications
,”
Int. J. Quantum Chem.
48
,
15
48
(
1993
).
71.
J. F.
Stanton
and
J.
Gauss
, “
Analytic energy derivatives for ionized states described by the equation-of-motion coupled cluster method
,”
J. Chem. Phys.
101
,
8938
8944
(
1994
).
72.
X.
Zheng
and
L.
Cheng
, “
Performance of delta-coupled-cluster methods for calculations of core-ionization energies of first-row elements
,”
J. Chem. Theory Comput.
15
,
4945
4955
(
2019
).
73.
Y. C.
Park
,
A.
Perera
, and
R. J.
Bartlett
, “
Equation of motion coupled-cluster for core excitation spectra: Two complementary approaches
,”
J. Chem. Phys.
151
,
164117
(
2019
).
74.
F.
Frati
,
F.
de Groot
,
J.
Cerezo
,
F.
Santoro
,
L.
Cheng
,
R.
Faber
, and
S.
Coriani
, “
Coupled cluster study of the x-ray absorption spectra of formaldehyde derivatives at the oxygen, carbon, and fluorine K-edges
,”
J. Chem. Phys.
151
,
064107
(
2019
).
75.
J.
Liu
,
D.
Matthews
,
S.
Coriani
, and
L.
Cheng
, “
Benchmark calculations of K-edge ionization energies for first-row elements using scalar-relativistic core–valence-separated equation-of-motion coupled-cluster methods
,”
J. Chem. Theory Comput.
15
,
1642
1651
(
2019
).
76.
K. D.
Nanda
,
M. L.
Vidal
,
R.
Faber
,
S.
Coriani
, and
A. I.
Krylov
, “
How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation
,”
Phys. Chem. Chem. Phys.
22
,
2629
2641
(
2020
).
77.
M. L.
Vidal
,
P.
Pokhilko
,
A. I.
Krylov
, and
S.
Coriani
, “
Equation-of-motion coupled-cluster theory to model L-edge X-ray absorption and photoelectron spectra
,”
J. Phys. Chem. Lett.
11
,
8314
8321
(
2020
).
78.
M. L.
Vidal
,
A. I.
Krylov
, and
S.
Coriani
, “
Dyson orbitals within the fc-CVS-EOM-CCSD framework: Theory and application to X-ray photoelectron spectroscopy of ground and excited states
,”
Phys. Chem. Chem. Phys.
22
,
2693
2703
(
2020
).
79.
D. A.
Matthews
, “
EOM-CC methods with approximate triple excitations applied to core excitation and ionisation energies
,”
Mol. Phys.
118
,
e1771448
(
2020
).
80.
N. A.
Besley
and
F. A.
Asmuruf
, “
Time-dependent density functional theory calculations of the spectroscopy of core electrons
,”
Phys. Chem. Chem. Phys.
12
,
12024
12039
(
2010
).
81.
N. A.
Besley
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
, “
Self-consistent-field calculations of core excited states
,”
J. Chem. Phys.
130
,
124308
(
2009
).
82.
J.
Wenzel
,
M.
Wormit
, and
A.
Dreuw
, “
Calculating core-level excitations and x-ray absorption spectra of medium-sized closed-shell molecules with the algebraic-diagrammatic construction scheme for the polarization propagator
,”
J. Comput. Chem.
35
,
1900
(
2014
).
83.
J.
Wenzel
,
M.
Wormit
, and
A.
Dreuw
, “
Calculating X-ray absorption spectra of open-shell molecules with the unrestricted algebraic-diagrammatic construction scheme for the polarization propagator
,”
J. Chem. Theory Comput.
10
,
4583
(
2014
).
84.
J.
Wenzel
,
A.
Holzer
,
M.
Wormit
, and
A.
Dreuw
, “
Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states
,”
J. Chem. Phys.
142
,
214104
(
2015
).
85.
B.
Simon
, “
The definition of molecular resonance curves by the method of exterior complex scaling
,”
Phys. Lett. A
71
,
211
(
1979
).
86.
A. U.
Hazi
and
H. S.
Taylor
, “
Stabilization method of calculating resonance energies: Model problem
,”
Phys. Rev. A
1
,
1109
1120
(
1970
).
87.
H. S.
Taylor
and
A. U.
Hazi
, “
Comment on the stabilization method: Variational calculation of the resonance width
,”
Phys. Rev. A
14
,
2071
2074
(
1976
).
88.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M. H.
Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
,
R. A.
DiStasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T. V.
Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
89.
G.
Howat
,
T.
Åberg
,
O.
Goscinski
,
S. C.
Soong
,
C. P.
Bhalla
, and
M.
Ahmed
, “
Effect of interchannel interaction on the neon KLL Auger transition rates
,”
Phys. Lett. A
60
,
404
406
(
1977
).
90.
A.
Albiez
,
M.
Thoma
,
W.
Weber
, and
W.
Mehlhorn
, “
KL2,3 ionization in neon by electron impact in the range 1.5–50 keV: Cross sections and alignment
,”
Z. Phys. D: At., Mol. Clusters
16
,
97
106
(
1990
).
91.
M.
Coreno
,
L.
Avaldi
,
R.
Camilloni
,
K. C.
Prince
,
M.
de Simone
,
J.
Karvonen
,
R.
Colle
, and
S.
Simonucci
, “
Measurement and ab initio calculation of the Ne photoabsorption spectrum in the region of the K edge
,”
Phys. Rev. A
59
,
2494
2497
(
1999
).
92.
A.
Müller
,
D.
Bernhardt
,
A.
Borovik
, Jr.
,
T.
Buhr
,
J.
Hellhund
,
K.
Holste
,
A. L. D.
Kilcoyne
,
S.
Klumpp
,
M.
Martins
,
S.
Ricz
, “
Photoionization of Ne atoms and Ne+ ions near the K edge: Precision spectroscopy and absolute cross-sections
,”
Astrophys. J.
836
,
166
(
2017
).
93.
R.
Colle
and
S.
Simonucci
, “
Multichannel resonance processes: Theory and application to the Auger spectra of the CO molecule
,”
Phys. Rev. A
48
,
392
403
(
1993
).
94.
T.-C.
Jagau
, “
Investigating tunnel and above-barrier ionization using complex-scaled coupled-cluster theory
,”
J. Chem. Phys.
145
,
204115
(
2016
).
95.
R.
Colle
and
S.
Simonucci
, “
Interchannel coupling in Auger decay processes: Characterization of normal and satellite lines in the Auger electron spectrum of the LiF molecule
,”
Phys. Rev. A
42
,
3913
3925
(
1990
).
96.
R.
Sarangi
,
M. L.
Vidal
,
S.
Coriani
, and
A. I.
Krylov
, “
On the basis set selection for calculations of core-level states: Different strategies to balance cost and accuracy
,”
Mol. Phys.
118
,
e1769872
(
2020
).
97.
R.
Sankari
,
M.
Ehara
,
H.
Nakatsuji
,
Y.
Senba
,
K.
Hosokawa
,
H.
Yoshida
,
A.
De Fanis
,
Y.
Tamenori
,
S.
Aksela
, and
K.
Ueda
, “
Vibrationally resolved O 1s photoelectron spectrum of water
,”
Chem. Phys. Lett.
380
,
647
653
(
2003
).
98.
H.
Ågren
and
H.
Siegbahn
, “
Semi-internal correlation in the Auger electron spectrum of H2O
,”
Chem. Phys. Lett.
69
,
424
429
(
1980
).
99.
W. E.
Moddeman
,
T. A.
Carlson
,
M. O.
Krause
,
B. P.
Pullen
,
W. E.
Bull
, and
G. K.
Schweitzer
, “
Determination of the K—LL Auger spectra of N2, O2, CO, NO, H2O, and CO2
,”
J. Chem. Phys.
55
,
2317
2336
(
1971
).
100.
D. W.
Lindle
,
C. M.
Truesdale
,
P. H.
Kobrin
,
T. A.
Ferrett
,
P. A.
Heimann
,
U.
Becker
,
H. G.
Kerkhoff
, and
D. A.
Shirley
, “
Nitrogen K-shell photoemission and Auger emission from N2 and NO
,”
J. Chem. Phys.
81
,
5375
5378
(
1984
).
101.
U.
Hergenhahn
,
O.
Kugeler
,
A.
Rüdel
,
E. E.
Rennie
, and
A. M.
Bradshaw
, “
Symmetry-selective observation of the N 1s shape resonance in N2
,”
J. Phys. Chem. A
105
,
5704
5708
(
2001
).
102.
S. K.
Semenov
,
N. A.
Cherepkov
,
M.
Matsumoto
,
K.
Fujiwara
,
K.
Ueda
,
E.
Kukk
,
F.
Tahara
,
T.
Sunami
,
H.
Yoshida
,
T.
Tanaka
 et al, “
Vibrationally resolved photoionization of the 1σg and 1σu shells of N2 molecule
,”
J. Phys. B: At., Mol. Opt. Phys.
39
,
375
386
(
2005
).
103.
S. L.
Sorensen
,
C.
Miron
,
R.
Feifel
,
M.-N.
Piancastelli
,
O.
Björneholm
, and
S.
Svensson
, “
The influence of the σ resonance on the Auger decay of core-ionized molecular nitrogen
,”
Chem. Phys. Lett.
456
,
1
6
(
2008
).
104.
E. E.
Rennie
,
B.
Kempgens
,
H. M.
Köppe
,
U.
Hergenhahn
,
J.
Feldhaus
,
B. S.
Itchkawitz
,
A. L. D.
Kilcoyne
,
A.
Kivimäki
,
K.
Maier
,
M. N.
Piancastelli
,
M.
Polcik
,
A.
Rüdel
, and
A. M.
Bradshaw
, “
A comprehensive photoabsorption, photoionization, and shake-up excitation study of the C 1s cross section of benzene
,”
J. Chem. Phys.
113
,
7362
7375
(
2000
).
105.
F.
Tarantelli
,
A.
Sgamellotti
,
L. S.
Cederbaum
, and
J.
Schirmer
, “
Theoretical investigation of many dicationic states and the Auger spectrum of benzene
,”
J. Chem. Phys.
86
,
2201
2206
(
1987
).
106.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled cluster singles and doubles model CC2
,”
Chem. Phys. Lett.
243
,
409
418
(
1995
).
107.
V.
Parravicini
and
T.-C.
Jagau
, “
Embedded equation-of-motion coupled-cluster theory for electronic excitation, ionisation, electron attachment, and electronic resonances
,”
Mol. Phys.
119
,
e1943029
(
2021
).

Supplementary Material

You do not currently have access to this content.