We demonstrate the importance of the dynamical electron correlation effect in diabatic couplings of electron-exchange processes in molecular aggregates. To perform a multireference perturbation theory with large active space of molecular aggregates, an efficient low-rank approximation is applied to the complete active space self-consistent field reference functions. It is known that kinetic rates of electron-exchange processes, such as singlet fission, triplet–triplet annihilation, and triplet exciton transfer, are not sufficiently explained by the direct term of the diabatic couplings but efficiently mediated by the low-lying charge transfer states if the two molecules are in close proximity. It is presented in this paper, however, that regardless of the distance of the molecules, the direct term is considerably underestimated by up to three orders of magnitude without the dynamical electron correlation, i.e., the diabatic states expressed in the active space are not adequate to quantitatively reproduce the electron-exchange processes.

1.
C. A.
Mead
and
D. G.
Truhlar
, “
Conditions for the definition of a strictly diabatic electronic basis for molecular systems
,”
J. Chem. Phys.
77
,
6090
6098
(
1982
).
2.
M.
Baer
, “
Adiabatic and diabatic representations for atom-molecule collisions: Treatment of the collinear arrangement
,”
Chem. Phys. Lett.
35
,
112
118
(
1975
).
3.
M.
Baer
, “
Electronic non-adiabatic transitions derivation of the general adiabatic-diabatic transformation matrix
,”
Mol. Phys.
40
,
1011
1013
(
1980
).
4.
B.
Heumann
and
R.
Schinke
, “
Emission spectroscopy of dissociating H2S: Influence of nonadiabatic coupling
,”
J. Chem. Phys.
101
,
7488
7499
(
1994
).
5.
T.
Van Voorhis
,
T.
Kowalczyk
,
B.
Kaduk
,
L.-P.
Wang
,
C.-L.
Cheng
, and
Q.
Wu
, “
The diabatic picture of electron transfer, reaction barriers, and molecular dynamics
,”
Annu. Rev. Phys. Chem.
61
,
149
170
(
2010
).
6.
H.
Nakamura
and
D. G.
Truhlar
, “
The direct calculation of diabatic states based on configurational uniformity
,”
J. Chem. Phys.
115
,
10353
(
2001
).
7.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
, “
Approximately diabatic states from block diagonalization of the electronic Hamiltonian
,”
J. Chem. Phys.
89
,
7367
7381
(
1988
).
8.
T.
Pacher
,
H.
Köppel
, and
L. S.
Cederbaum
, “
Quasidiabatic states from ab initio calculations by block diagonalization of the electronic Hamiltonian: Use of frozen orbitals
,”
J. Chem. Phys.
95
,
6668
6680
(
1991
).
9.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
, “
Adiabatic and quasidiabatic states in a gauge theoretical framework
,”
Adv. Chem. Phys.
84
,
293
391
(
1993
).
10.
K.
Ruedenberg
and
G. J.
Atchity
, “
A quantum chemical determination of diabatic states
,”
J. Chem. Phys.
99
,
3799
3803
(
1993
).
11.
P. H.
Dederichs
,
S.
Blügel
,
R.
Zeller
, and
H.
Akai
, “
Ground states of constrained systems: Application to cerium impurities
,”
Phys. Rev. Lett.
53
,
2512
2515
(
1984
).
12.
Q.
Wu
,
C.-L.
Cheng
, and
T.
Van Voorhis
, “
Configuration interaction based on constrained density functional theory: A multireference method
,”
J. Chem. Phys.
127
,
164119
(
2007
).
13.
S. R.
Yost
,
E.
Hontz
,
S.
Yeganeh
, and
T.
Van Voorhis
, “
Triplet vs singlet energy transfer in organic semiconductors: The tortoise and the hare
,”
J. Phys. Chem. C
116
,
17369
17377
(
2012
).
14.
S. R.
Yost
,
J.
Lee
,
M. W. B.
Wilson
,
T.
Wu
,
D. P.
McMahon
,
R. R.
Parkhurst
,
N. J.
Thompson
,
D. N.
Congreve
,
A.
Rao
,
K.
Johnson
,
M. Y.
Sfeir
,
M. G.
Bawendi
,
T. M.
Swager
,
R. H.
Friend
,
M. A.
Baldo
, and
T.
Van Voorhis
, “
A transferable model for singlet-fission kinetics
,”
Nat. Chem.
6
,
492
497
(
2014
).
15.
A. A.
Voityuk
and
N.
Rösch
, “
Fragment charge difference method for estimating donor–acceptor electronic coupling: Application to DNA π-stacks
,”
J. Chem. Phys.
117
,
5607
5616
(
2002
).
16.
C.-P.
Hsu
,
Z.-Q.
You
, and
H.-C.
Chen
, “
Characterization of the short-range couplings in excitation energy transfer
,”
J. Phys. Chem. C
112
,
1204
1212
(
2008
).
17.
Z.-Q.
You
and
C.-P.
Hsu
, “
The fragment spin difference scheme for triplet-triplet energy transfer coupling
,”
J. Chem. Phys.
133
,
074105
(
2010
).
18.
C.-H.
Yang
and
C.-P.
Hsu
, “
First-principle characterization for singlet fission couplings
,”
J. Phys. Chem. Lett.
6
,
1925
1929
(
2015
).
19.
K. J.
Fujimoto
and
S.
Hayashi
, “
Electronic Coulombic coupling of excitation-energy transfer in xanthorhodopsin
,”
J. Am. Chem. Soc.
131
,
14152
14153
(
2009
).
20.
K. J.
Fujimoto
, “
Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states
,”
J. Chem. Phys.
137
,
034101
(
2012
).
21.
K.
Fujimoto
and
W.
Yang
, “
Density-fragment interaction approach for quantum-mechanical/molecular-mechanical calculations with application to the excited states of a Mg2+-sensitive dye
,”
J. Chem. Phys.
129
,
054102
(
2008
).
22.
M.
Al Hajj
,
J.-P.
Malrieu
, and
N.
Guihéry
, “
Renormalized excitonic method in terms of block excitations: Application to spin lattices
,”
Phys. Rev. B
72
,
224412
(
2005
).
23.
H.
Zhang
,
J.-P.
Malrieu
,
H.
Ma
, and
J.
Ma
, “
Implementation of renormalized excitonic method at ab initio level
,”
J. Comput. Chem.
33
,
34
43
(
2012
).
24.
Y.
Ma
,
Y.
Liu
, and
H.
Ma
, “
A new fragment-based approach for calculating electronic excitation energies of large systems
,”
J. Chem. Phys.
136
,
024113
(
2012
).
25.
Y.
Ma
and
H.
Ma
, “
Calculating excited states of molecular aggregates by the renormalized excitonic method
,”
J. Phys. Chem. A
117
,
3655
3665
(
2013
).
26.
S. M.
Parker
,
T.
Seideman
,
M. A.
Ratner
, and
T.
Shiozaki
, “
Communication: Active-space decomposition for molecular dimers
,”
J. Chem. Phys.
139
,
021108
(
2013
).
27.
S. M.
Parker
and
T.
Shiozaki
, “
Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm
,”
J. Chem. Phys.
141
,
211102
(
2014
).
28.
S. M.
Parker
,
T.
Seideman
,
M. A.
Ratner
, and
T.
Shiozaki
, “
Model Hamiltonian analysis of singlet fission from first principles
,”
J. Phys. Chem. C
118
,
12700
12705
(
2014
).
29.
S. M.
Parker
and
T.
Shiozaki
, “
Quasi-diabatic states from active space decomposition
,”
J. Chem. Theory Comput.
10
,
3738
3744
(
2014
).
30.
R. D.
Harcourt
,
G. D.
Scholes
, and
K. P.
Ghiggino
, “
Rate expressions for excitation transfer. II. Electronic considerations of direct and through–configuration exciton resonance interactions
,”
J. Chem. Phys.
101
,
10521
10525
(
1994
).
31.
G. D.
Scholes
,
R. D.
Harcourt
, and
K. P.
Ghiggino
, “
Rate expressions for excitation transfer. III. An ab initio study of electronic factors in excitation transfer and exciton resonance interactions
,”
J. Chem. Phys.
102
,
9574
9581
(
1995
).
32.
G. D.
Scholes
and
R. D.
Harcourt
, “
Configuration interaction and the theory of electronic factors in energy transfer and molecular exciton interactions
,”
J. Chem. Phys.
104
,
5054
5061
(
1996
).
33.
A. L.
Thompson
,
K. M.
Gaab
,
J.
Xu
,
C. J.
Bardeen
, and
T. J.
Martínez
, “
Variable electronic coupling in phenylacetylene dendrimers: The role of Förster, Dexter, and charge-transfer interactions
,”
J. Phys. Chem. A
108
,
671
682
(
2004
).
34.
T.
Zeng
,
R.
Hoffmann
, and
N.
Ananth
, “
The low-lying electronic states of pentacene and their roles in singlet fission
,”
J. Am. Chem. Soc.
136
,
5755
5764
(
2014
).
35.
A. A.
Granovsky
, “
Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory
,”
J. Chem. Phys.
134
,
214113
(
2011
).
36.
S.
Nishio
and
Y.
Kurashige
, “
Rank-one basis made from matrix-product states for a low-rank approximation of molecular aggregates
,”
J. Chem. Phys.
151
,
084110
(
2019
).
37.
T.
Zhang
and
G. H.
Golub
, “
Rank-one approximation to high order tensors
,”
SIAM J. Matrix Anal. Appl.
23
,
534
550
(
2001
).
38.
L.
Qi
, “
The best rank-one approximation ratio of a tensor space
,”
SIAM J. Matrix Anal. Appl.
32
,
430
442
(
2011
).
39.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
4130
(
1999
).
40.
A. O.
Mitrushenkov
,
G.
Fano
,
F.
Ortolani
,
R.
Linguerri
, and
P.
Palmieri
, “
Quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
115
,
6815
6821
(
2001
).
41.
G. K.-L.
Chan
and
M.
Head-Gordon
, “
Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
,”
J. Chem. Phys.
116
,
4462
4476
(
2002
).
42.
J.
Finley
,
P.-Å.
Malmqvist
,
B. O.
Roos
, and
L.
Serrano-Andrés
, “
The multi-state CASPT2 method
,”
Chem. Phys. Lett.
288
,
299
306
(
1998
).
43.
Y.
Kurashige
,
J.
Chalupský
,
T. N.
Lan
, and
T.
Yanai
, “
Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group
,”
J. Chem. Phys.
141
,
174111
(
2014
).
44.
D.
Zgid
and
M.
Nooijen
, “
Obtaining the two-body density matrix in the density matrix renormalization group method
,”
J. Chem. Phys.
128
,
144115
(
2008
).
45.
D.
Ghosh
,
J.
Hachmann
,
T.
Yanai
, and
G. K.-L.
Chan
, “
Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene
,”
J. Chem. Phys.
128
,
144117
(
2008
).
46.
L.
Grisanti
,
Y.
Olivier
,
L.
Wang
,
S.
Athanasopoulos
,
J.
Cornil
, and
D.
Beljonne
, “
Roles of local and nonlocal electron-phonon couplings in triplet exciton diffusion in the anthracene crystal
,”
Phys. Rev. B
88
,
035450
(
2013
).
47.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
48.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
49.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
 III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
, molpro, version, a package of ab initio programs (2022), see https://www.molpro.net/.
50.
H. J.
Werner
and
P. J.
Knowles
, “
A second order multiconfiguration SCF procedure with optimum convergence
,”
J. Chem. Phys.
82
,
5053
5063
(
1985
).
51.
P. J.
Knowles
and
H.-J.
Werner
, “
An efficient second-order MC SCF method for long configuration expansions
,”
Chem. Phys. Lett.
115
,
259
267
(
1985
).
52.
D. A.
Kreplin
,
P. J.
Knowles
, and
H.-J.
Werner
, “
Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence
,”
J. Chem. Phys.
150
,
194106
(
2019
).
53.
D. A.
Kreplin
,
P. J.
Knowles
, and
H.-J.
Werner
, “
MCSCF optimization revisited. II. Combined first- and second-order orbital optimization for large molecules
,”
J. Chem. Phys.
152
,
074102
(
2020
).
54.
T.
Yanai
,
Y.
Kurashige
,
W.
Mizukami
,
J.
Chalupský
,
T. N.
Lan
, and
M.
Saitow
, “
Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications
,”
Int. J. Quantum Chem.
115
,
283
299
(
2015
).
55.
H.
Nakano
, “
Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions
,”
J. Chem. Phys.
99
,
7983
7992
(
1993
).
56.
Y.
Kurashige
and
T.
Yanai
, “
Theoretical study of the π → π* excited states of oligoacenes: A full π-valence DMRG-CASPT2 study
,”
Bull. Chem. Soc. Jpn.
87
,
1071
1073
(
2014
).
57.
K.
Miyata
,
Y.
Kurashige
,
K.
Watanabe
,
T.
Sugimoto
,
S.
Takahashi
,
S.
Tanaka
,
J.
Takeya
,
T.
Yanai
, and
Y.
Matsumoto
, “
Coherent singlet fission activated by symmetry breaking
,”
Nat. Chem.
9
,
983
989
(
2017
).

Supplementary Material

You do not currently have access to this content.