Periodic nanoparticle arrays have attracted considerable interest recently since the lattice effect can lead to spectrally narrow resonances and tune the resonance position in a broad range. Multipole decomposition is widely used to analyze the role of the multipoles in the resonance excitations, radiation, and scattering of electromagnetic waves. However, previous studies have not addressed the validity and accuracy of the multipole decomposition around the lattice resonance. The applicability of the exact multipole decomposition based on spherical harmonics expansion has not been demonstrated around the lattice resonance with the strong multipole coupling. This work studies the two-dimensional periodic arrays of both plasmonic and dielectric nanospheres and compares the multipole decomposition results with the analytic ones around their lattice resonances. We study both the effective polarizabilities of multipoles and the scattering spectra of the structures. The analytical results are calculated from the coupled dipole–quadrupole model. This study demonstrates that the exact multipole decomposition agrees well with the numerical simulation around lattice resonances. Only a small number of multipoles are required to represent the results accurately.

1.
S.
Zou
,
N.
Janel
, and
G. C.
Schatz
, “
Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
,”
J. Chem. Phys.
120
,
10871
10875
(
2004
).
2.
V. A.
Markel
, “
Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres
,”
J. Phys. B: At., Mol. Opt. Phys.
38
,
L115
(
2005
).
3.
B.
Auguié
and
W. L.
Barnes
, “
Collective resonances in gold nanoparticle arrays
,”
Phys. Rev. Lett.
101
,
143902
(
2008
).
4.
P.
Offermans
,
M. C.
Schaafsma
,
S. R. K.
Rodriguez
,
Y.
Zhang
,
M.
Crego-Calama
,
S. H.
Brongersma
, and
J.
Gómez Rivas
, “
Universal scaling of the figure of merit of plasmonic sensors
,”
ACS Nano
5
,
5151
5157
(
2011
).
5.
W.
Wang
,
M.
Ramezani
,
A. I.
Väkeväinen
,
P.
Törmä
,
J. G.
Rivas
, and
T. W.
Odom
, “
The rich photonic world of plasmonic nanoparticle arrays
,”
Mater. Today
21
,
303
314
(
2018
).
6.
V. G.
Kravets
,
A. V.
Kabashin
,
W. L.
Barnes
, and
A. N.
Grigorenko
, “
Plasmonic surface lattice resonances: A review of properties and applications
,”
Chem. Rev.
118
,
5912
5951
(
2018
).
7.
S.
Tretyakov
,
Analytical Modeling in Applied Electromagnetics
(
Artech House
,
2003
).
8.
A. B.
Evlyukhin
,
C.
Reinhardt
,
A.
Seidel
,
B. S.
Luk’yanchuk
, and
B. N.
Chichkov
, “
Optical response features of Si-nanoparticle arrays
,”
Phys. Rev. B
82
,
045404
(
2010
).
9.
A. B.
Evlyukhin
,
C.
Reinhardt
,
U.
Zywietz
, and
B. N.
Chichkov
, “
Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions
,”
Phys. Rev. B
85
,
245411
(
2012
).
10.
V. E.
Babicheva
and
A. B.
Evlyukhin
, “
Metasurfaces with electric quadrupole and magnetic dipole resonant coupling
,”
ACS Photonics
5
,
2022
2033
(
2018
).
11.
V. E.
Babicheva
and
A. B.
Evlyukhin
, “
Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays
,”
Phys. Rev. B
99
,
195444
(
2019
).
12.
S. D.
Swiecicki
and
J. E.
Sipe
, “
Surface-lattice resonances in two-dimensional arrays of spheres: Multipolar interactions and a mode analysis
,”
Phys. Rev. B
95
,
195406
(
2017
).
13.
S. D.
Swiecicki
and
J. E.
Sipe
, “
Periodic green functions for 2D magneto-electric quadrupolar arrays: Explicitly satisfying the optical theorem
,”
J. Opt.
19
,
095006
(
2017
).
14.
A.
Han
,
C.
Dineen
,
V. E.
Babicheva
, and
J. V.
Moloney
, “
Second harmonic generation in metasurfaces with multipole resonant coupling
,”
Nanophotonics
9
,
3545
3556
(
2020
).
15.
A. B.
Evlyukhin
,
V. R.
Tuz
,
V. S.
Volkov
, and
B. N.
Chichkov
, “
Bianisotropy for light trapping in all-dielectric metasurfaces
,”
Phys. Rev. B
101
,
205415
(
2020
).
16.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
John Wiley & Sons
,
2008
).
17.
D. W.
Mackowski
, “
Calculation of total cross sections of multiple-sphere clusters
,”
J. Opt. Soc. Am. A
11
,
2851
2861
(
1994
).
18.
Y.-l.
Xu
, “
Electromagnetic scattering by an aggregate of spheres
,”
Appl. Opt.
34
,
4573
4588
(
1995
).
19.
R.
Alaee
,
C.
Rockstuhl
, and
I.
Fernandez-Corbaton
, “
An electromagnetic multipole expansion beyond the long-wavelength approximation
,”
Opt. Commun.
407
,
17
21
(
2018
).
20.
R.
Alaee
,
C.
Rockstuhl
, and
I.
Fernandez-Corbaton
, “
Exact multipolar decompositions with applications in nanophotonics
,”
Adv. Opt. Mater.
7
,
1800783
(
2019
).
21.
A. B.
Evlyukhin
,
C.
Reinhardt
, and
B. N.
Chichkov
, “
Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation
,”
Phys. Rev. B
84
,
235429
(
2011
).
22.
A. E.
Miroshnichenko
,
A. B.
Evlyukhin
,
Y. F.
Yu
,
R. M.
Bakker
,
A.
Chipouline
,
A. I.
Kuznetsov
,
B.
Luk’yanchuk
,
B. N.
Chichkov
, and
Y. S.
Kivshar
, “
Nonradiating anapole modes in dielectric nanoparticles
,”
Nat. Commun.
6
,
8069
(
2015
).
23.
R.
Colom
,
R.
McPhedran
,
B.
Stout
, and
N.
Bonod
, “
Modal expansion of the scattered field: Causality, nondivergence, and nonresonant contribution
,”
Phys. Rev. B
98
,
085418
(
2018
).
24.
R.
Colom
,
R.
McPhedran
,
B.
Stout
, and
N.
Bonod
, “
Modal analysis of anapoles, internal fields, and Fano resonances in dielectric particles
,”
J. Opt. Soc. Am. B
36
,
2052
2061
(
2019
).
25.
A. B.
Evlyukhin
and
B. N.
Chichkov
, “
Multipole decompositions for directional light scattering
,”
Phys. Rev. B
100
,
125415
(
2019
).
26.
P. D.
Terekhov
,
V. E.
Babicheva
,
K. V.
Baryshnikova
,
A. S.
Shalin
,
A.
Karabchevsky
, and
A. B.
Evlyukhin
, “
Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect
,”
Phys. Rev. B
99
,
045424
(
2019
).
27.
I.
Staude
,
A. E.
Miroshnichenko
,
M.
Decker
,
N. T.
Fofang
,
S.
Liu
,
E.
Gonzales
,
J.
Dominguez
,
T. S.
Luk
,
D. N.
Neshev
,
I.
Brener
 et al, “
Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks
,”
ACS Nano
7
,
7824
7832
(
2013
).
28.
M.
Decker
,
I.
Staude
,
M.
Falkner
,
J.
Dominguez
,
D. N.
Neshev
,
I.
Brener
,
T.
Pertsch
, and
Y. S.
Kivshar
, “
High-efficiency dielectric Huygens’ surfaces
,”
Adv. Opt. Mater.
3
,
813
820
(
2015
).
29.
M.
Yazdi
and
N.
Komjani
, “
Polarizability calculation of arbitrary individual scatterers, scatterers in arrays, and substrated scatterers
,”
J. Opt. Soc. Am. B
33
,
491
500
(
2016
).
30.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley, New York
,
1999
).
31.
A. B.
Evlyukhin
,
C.
Reinhardt
,
E.
Evlyukhin
, and
B. N.
Chichkov
, “
Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface
,”
J. Opt. Soc. Am. B
30
,
2589
2598
(
2013
).
32.
See https://www.cst.com for CST Studio Suite.
33.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
1998
).
You do not currently have access to this content.