The accuracy of the training data limits the accuracy of bulk properties from machine-learned potentials. For example, hybrid functionals or wave-function-based quantum chemical methods are readily available for cluster data but effectively out of scope for periodic structures. We show that local, atom-centered descriptors for machine-learned potentials enable the prediction of bulk properties from cluster model training data, agreeing reasonably well with predictions from bulk training data. We demonstrate such transferability by studying structural and dynamical properties of bulk liquid water with density functional theory and have found an excellent agreement with experimental and theoretical counterparts.
REFERENCES
1.
O.
Marsalek
and T. E.
Markland
, “Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects
,” J. Phys. Chem. Lett.
8
, 1545
–1551
(2017
).2.
J.
Behler
and M.
Parrinello
, “Generalized neural-network representation of high-dimensional potential-energy surfaces
,” Phys. Rev. Lett.
98
, 146401
(2007
).3.
J.
Behler
, “Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,” J. Chem. Phys.
134
, 074106
(2011
).4.
A. P.
Bartók
, M. C.
Payne
, R.
Kondor
, and G.
Csányi
, “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,” Phys. Rev. Lett.
104
, 136403
(2010
).5.
M.
Rupp
, A.
Tkatchenko
, K. R.
Müller
, and O. A.
von Lilienfeld
, “Fast and accurate modeling of molecular atomization energies with machine learning
,” Phys. Rev. Lett.
108
, 058301
(2012
).6.
A. P.
Bartók
, R.
Kondor
, and G.
Csányi
, “On representing chemical environments
,” Phys. Rev. B
87
, 184115
(2013
).7.
O. A.
von Lilienfeld
, R.
Ramakrishnan
, M.
Rupp
, and A.
Knoll
, “Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
,” Int. J. Quantum Chem.
115
, 1084
–1093
(2015
).8.
A. V.
Shapeev
, “Moment tensor potentials: A class of systematically improvable interatomic potentials
,” Multiscale Model. Simul.
14
, 1153
–1173
(2016
).9.
A.
Khorshidi
and A. A.
Peterson
, “Amp: A modular approach to machine learning in atomistic simulations
,” Comput. Phys. Commun.
207
, 310
–324
(2016
).10.
K.
Schütt
, P.-J.
Kindermans
, H. E.
Sauceda Felix
, S.
Chmiela
, A.
Tkatchenko
, and K.-R.
Müller
, “SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in NeurIPS 30
, edited by I.
Guyon
, U. V.
Luxburg
, S.
Bengio
, H.
Wallach
, R.
Fergus
, S.
Vishwanathan
, and R.
Garnett
(Curran Associates, Inc.
, 2017
), pp. 991
–1001
.11.
F. A.
Faber
, A. S.
Christensen
, B.
Huang
, and O. A.
von Lilienfeld
, “Alchemical and structural distribution based representation for universal quantum machine learning
,” J. Chem. Phys.
148
, 241717
(2018
).12.
E.
Kocer
, J. K.
Mason
, and H.
Erturk
, “A novel approach to describe chemical environments in high-dimensional neural network potentials
,” J. Chem. Phys.
150
, 154102
(2019
).13.
Y.
Zhang
, C.
Hu
, and B.
Jiang
, “Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation
,” J. Phys. Chem. Lett.
10
, 4962
–4967
(2019
).14.
A. S.
Christensen
, L. A.
Bratholm
, F. A.
Faber
, and O.
Anatole von Lilienfeld
, “FCHL revisited: Faster and more accurate quantum machine learning
,” J. Chem. Phys.
152
, 044107
(2020
).15.
V.
Zaverkin
and J.
Kästner
, “Gaussian moments as physically inspired molecular descriptors for accurate and scalable machine learning potentials
,” J. Chem. Theory Comput.
16
, 5410
–5421
(2020
).16.
K. T.
Schütt
, O. T.
Unke
, and M.
Gastegger
, “Equivariant message passing for the prediction of tensorial properties and molecular spectra
,” arXiv:2102.03150 (2021
).17.
N.
Artrith
and A.
Urban
, “An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
,” Comput. Mater. Sci.
114
, 135
–150
(2016
).18.
S.
Chmiela
, A.
Tkatchenko
, H. E.
Sauceda
, I.
Poltavsky
, K. T.
Schütt
, and K. R.
Müller
, “Machine learning of accurate energy-conserving molecular force fields
,” Sci. Adv.
3
, e1603015
(2017
).19.
K.
Gubaev
, E. V.
Podryabinkin
, and A. V.
Shapeev
, “Machine learning of molecular properties: Locality and active learning
,” J. Chem. Phys.
148
, 241727
(2018
).20.
N.
Lubbers
, J. S.
Smith
, and K.
Barros
, “Hierarchical modeling of molecular energies using a deep neural network
,” J. Chem. Phys.
148
, 241715
(2018
).21.
K.
Yao
, J. E.
Herr
, D. W.
Toth
, R.
Mckintyre
, and J.
Parkhill
, “The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics
,” Chem. Sci.
9
, 2261
–2269
(2018
).22.
O. T.
Unke
and M.
Meuwly
, “PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,” J. Chem. Theory Comput.
15
, 3678
–3693
(2019
).23.
A. M.
Cooper
, J.
Kästner
, A.
Urban
, and N.
Artrith
, “Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide
,” npj Comput. Mater.
6
, 54
(2020
).24.
V.
Zaverkin
, D.
Holzmüller
, I.
Steinwart
, and J.
Kästner
, “Fast and sample-efficient interatomic neural network potentials for molecules and materials based on Gaussian moments
,” J. Chem. Theory Comput.
17
, 6658
–6670
(2021
).25.
K.
Hornik
, “Approximation capabilities of multilayer feedforward networks
,” Neural Networks
4
, 251
–257
(1991
).26.
T.
Morawietz
, A.
Singraber
, C.
Dellago
, and J.
Behler
, “How van der Waals interactions determine the unique properties of water
,” Proc. Natl. Acad. Sci. U. S. A.
113
, 8368
–8373
(2016
).27.
S.
Brickel
, A. K.
Das
, O. T.
Unke
, H. T.
Turan
, and M.
Meuwly
, “Reactive molecular dynamics for the [Cl–CH3–Br]− reaction in the gas phase and in solution: A comparative study using empirical and neural network force fields
,” Electron. Struct.
1
, 024002
(2019
).28.
S.
Käser
, O. T.
Unke
, and M.
Meuwly
, “Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces
,” J. Chem. Phys.
152
, 214304
(2020
).29.
G.
Molpeceres
, V.
Zaverkin
, and J.
Kästner
, “Neural-network assisted study of nitrogen atom dynamics on amorphous solid water—I. Adsorption and desorption
,” Mon. Not. R. Astron. Soc.
499
, 1373
–1384
(2020
).30.
S.
Tovey
, A.
Narayanan Krishnamoorthy
, G.
Sivaraman
, J.
Guo
, C.
Benmore
, A.
Heuer
, and C.
Holm
, “DFT accurate interatomic potential for molten NaCl from machine learning
,” J. Phys. Chem. C
124
, 25760
–25768
(2020
).31.
P.
Korotaev
and A.
Shapeev
, “Lattice dynamics of YbxCo4Sb12 skutterudite by machine-learning interatomic potentials: Effect of filler concentration and disorder
,” Phys. Rev. B
102
, 184305
(2020
).32.
M. F.
Calegari Andrade
, H.-Y.
Ko
, L.
Zhang
, R.
Car
, and A.
Selloni
, “Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics
,” Chem. Sci.
11
, 2335
–2341
(2020
).33.
G.
Molpeceres
, V.
Zaverkin
, N.
Watanabe
, and J.
Kästner
, “Binding energies and sticking coefficients of H2 on crystalline and amorphous CO ice
,” Astron. Astrophys.
648
, A84
(2021
).34.
L.
Zhang
, H.
Wang
, R.
Car
, and W.
E
, “Phase diagram of a deep potential water model
,” Phys. Rev. Lett.
126
, 236001
(2021
).35.
T. B.
Blank
, S. D.
Brown
, A. W.
Calhoun
, and D. J.
Doren
, “Neural network models of potential energy surfaces
,” J. Chem. Phys.
103
, 4129
–4137
(1995
).36.
S.
Lorenz
, A.
Groß
, and M.
Scheffler
, “Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
,” Chem. Phys. Lett.
395
, 210
–215
(2004
).37.
A. D.
Becke
, “Density-functional thermochemistry. III. The role of exact exchange
,” J. Chem. Phys.
98
, 5648
–5652
(1993
).38.
P. J.
Stephens
, F. J.
Devlin
, C. F.
Chabalowski
, and M. J.
Frisch
, “Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,” J. Phys. Chem.
98
, 11623
–11627
(1994
).39.
S. A.
Ghasemi
, A.
Hofstetter
, S.
Saha
, and S.
Goedecker
, “Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,” Phys. Rev. B
92
, 045131
(2015
).40.
S.
Faraji
, S. A.
Ghasemi
, S.
Rostami
, R.
Rasoulkhani
, B.
Schaefer
, S.
Goedecker
, and M.
Amsler
, “High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride
,” Phys. Rev. B
95
, 104105
(2017
).41.
A. K.
Rappe
and W. A.
Goddard
, “Charge equilibration for molecular dynamics simulations
,” J. Phys. Chem.
95
, 3358
–3363
(1991
).42.
C. E.
Wilmer
, K. C.
Kim
, and R. Q.
Snurr
, “An extended charge equilibration method
,” J. Phys. Chem. Lett.
3
, 2506
–2511
(2012
).43.
Y.-T.
Cheng
, T.-R.
Shan
, T.
Liang
, R. K.
Behera
, S. R.
Phillpot
, and S. B.
Sinnott
, “A charge optimized many-body (comb) potential for titanium and titania
,” J. Phys.: Condens. Matter
26
, 315007
(2014
).44.
M.
Gastegger
, C.
Kauffmann
, J.
Behler
, and P.
Marquetand
, “Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes
,” J. Chem. Phys.
144
, 194110
(2016
).45.
B.
Monserrat
, J. G.
Brandenburg
, E. A.
Engel
, and B.
Cheng
, “Liquid water contains the building blocks of diverse ice phases
,” Nat. Commun.
11
, 5757
(2020
).46.
P.
Rowe
, V. L.
Deringer
, P.
Gasparotto
, G.
Csányi
, and A.
Michaelides
, “An accurate and transferable machine learning potential for carbon
,” J. Chem. Phys.
153
, 034702
(2020
).47.
J.
Westermayr
and P.
Marquetand
, “Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space
,” J. Chem. Phys.
153
, 154112
(2020
).48.
C.
Schran
, F.
Brieuc
, and D.
Marx
, “Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer
,” J. Chem. Phys.
154
, 051101
(2021
).49.
A.
Hajibabaei
, M.
Ha
, S.
Pourasad
, J.
Kim
, and K. S.
Kim
, “Machine learning of first-principles force-fields for alkane and polyene hydrocarbons
,” J. Phys. Chem. A
125
, 9414
–9420
(2021
).50.
M. A.
Collins
and V. A.
Deev
, “Accuracy and efficiency of electronic energies from systematic molecular fragmentation
,” J. Chem. Phys.
125
, 104104
(2006
).51.
H. M.
Netzloff
and M. A.
Collins
, “Ab initio energies of nonconducting crystals by systematic fragmentation
,” J. Chem. Phys.
127
, 134113
(2007
).52.
M. A.
Collins
, “Systematic fragmentation of large molecules by annihilation
,” Phys. Chem. Chem. Phys.
14
, 7744
–7751
(2012
).53.
M. S.
Gordon
, D. G.
Fedorov
, S. R.
Pruitt
, and L. V.
Slipchenko
, “Fragmentation methods: A route to accurate calculations on large systems
,” Chem. Rev.
112
, 632
–672
(2012
).54.
M. A.
Collins
and R. P. A.
Bettens
, “Energy-based molecular fragmentation methods
,” Chem. Rev.
115
, 5607
–5642
(2015
).55.
P.
Tröster
, K.
Lorenzen
, M.
Schwörer
, and P.
Tavan
, “Polarizable water models from mixed computational and empirical optimization
,” J. Phys. Chem. B
117
, 9486
–9500
(2013
).56.
D.
Koner
, S. M.
Salehi
, P.
Mondal
, and M.
Meuwly
, “Non-conventional force fields for applications in spectroscopy and chemical reaction dynamics
,” J. Chem. Phys.
153
, 010901
(2020
).57.
X.
Huang
, B. J.
Braams
, and J. M.
Bowman
, “Ab initio potential energy and dipole moment surfaces of (H2O)2
,” J. Phys. Chem. A
110
, 445
–451
(2006
).58.
R.
Bukowski
, K.
Szalewicz
, G. C.
Groenenboom
, and A.
van der Avoird
, “Predictions of the properties of water from first principles
,” Science
315
, 1249
–1252
(2007
).59.
V.
Babin
, G. R.
Medders
, and F.
Paesani
, “Toward a universal water model: First principles simulations from the dimer to the liquid phase
,” J. Phys. Chem. Lett.
3
, 3765
–3769
(2012
).60.
V.
Babin
, C.
Leforestier
, and F.
Paesani
, “Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,” J. Chem. Theory Comput.
9
, 5395
–5403
(2013
).61.
X.
He
, T.
Zhu
, X.
Wang
, J.
Liu
, and J. Z. H.
Zhang
, “Fragment quantum mechanical calculation of proteins and its applications
,” Acc. Chem. Res.
47
, 2748
–2757
(2014
).62.
J.
Liu
, X.
He
, J. Z. H.
Zhang
, and L.-W.
Qi
, “Hydrogen-bond structure dynamics in bulk water: Insights from ab initio simulations with coupled cluster theory
,” Chem. Sci.
9
, 2065
–2073
(2018
).63.
J.
Liu
, J. Z. H.
Zhang
, and X.
He
, “Probing the ion-specific effects at the water/air interface and water-mediated ion pairing in sodium halide solution with ab initio molecular dynamics
,” J. Phys. Chem. B
122
, 10202
–10209
(2018
).64.
W. L.
Jorgensen
and C.
Jenson
, “Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density
,” J. Comput. Chem.
19
, 1179
–1186
(1998
).65.
P. E.
Blöchl
, “Projector augmented-wave method
,” Phys. Rev. B
50
, 17953
–17979
(1994
).66.
Y.
Zhang
and W.
Yang
, “Comment on ‘Generalized gradient approximation made simple
,’” Phys. Rev. Lett.
80
, 890
(1998
).67.
S.
Grimme
, J.
Antony
, S.
Ehrlich
, and H.
Krieg
, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,” J. Chem. Phys.
132
, 154104
(2010
).68.
A.
Cooper
, J.
Kästner
, A.
Urban
, and N.
Artrith
, “Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide
,” Materials Cloud Archive
2020.0037/v1 (2020
).69.
G.
Molpeceres
, V.
Zaverkin
, and J.
Kästner
, “N-ASW: Molecular dynamics data [data set]
,” Zenodo. 70.
F.
Weigend
and R.
Ahlrichs
, “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,” Phys. Chem. Chem. Phys.
7
, 3297
–3305
(2005
).71.
F.
Weigend
, “Accurate Coulomb-fitting basis sets for H to Rn
,” Phys. Chem. Chem. Phys.
8
, 1057
–1065
(2006
).72.
F.
Furche
, R.
Ahlrichs
, C.
Hättig
, W.
Klopper
, M.
Sierka
, and F.
Weigend
, “Turbomole
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
, 91
–100
(2014
).73.
S.
Metz
, J.
Kästner
, A. A.
Sokol
, T. W.
Keal
, and P.
Sherwood
, “ChemShell—A modular software package for QM/MM simulations
,” Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
, 101
–110
(2014
).74.
P.
Sherwood
, A. H.
de Vries
, M. F.
Guest
, G.
Schreckenbach
, C. R. A.
Catlow
, S. A.
French
, A. A.
Sokol
, S. T.
Bromley
, W.
Thiel
, A. J.
Turner
, S.
Billeter
, F.
Terstegen
, S.
Thiel
, J.
Kendrick
, S. C.
Rogers
, J.
Casci
, M.
Watson
, F.
King
, E.
Karlsen
, M.
Sjøvoll
, A.
Fahmi
, A.
Schäfer
, and C.
Lennartz
, “QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis
,” J. Mol. Struct.: THEOCHEM
632
, 1
–28
(2003
).75.
C.
Lee
, W.
Yang
, and R. G.
Parr
, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,” Phys. Rev. B
37
, 785
–789
(1988
).76.
V.
Zaverkin
, D.
Holzmüller
, R.
Schuldt
, and J.
Kästner
, “Predicting properties of periodic systems from cluster data: A case study of liquid water
,” [Data set] Zenodo. 77.
78.
A.
Hjorth Larsen
, J.
Jørgen Mortensen
, J.
Blomqvist
, I. E.
Castelli
, R.
Christensen
, M.
Dułak
, J.
Friis
, M. N.
Groves
, B.
Hammer
, C.
Hargus
, E. D.
Hermes
, P. C.
Jennings
, P.
Bjerre Jensen
, J.
Kermode
, J. R.
Kitchin
, E.
Leonhard Kolsbjerg
, J.
Kubal
, K.
Kaasbjerg
, S.
Lysgaard
, J.
Bergmann Maronsson
, T.
Maxson
, T.
Olsen
, L.
Pastewka
, A.
Peterson
, C.
Rostgaard
, J.
Schiøtz
, O.
Schütt
, M.
Strange
, K. S.
Thygesen
, T.
Vegge
, L.
Vilhelmsen
, M.
Walter
, Z.
Zeng
, and K. W.
Jacobsen
, “The atomic simulation environment—A Python library for working with atoms
,” J. Phys.: Condens. Matter
29
, 273002
(2017
).79.
M.
Gastegger
, J.
Behler
, and P.
Marquetand
, “Machine learning molecular dynamics for the simulation of infrared spectra
,” Chem. Sci.
8
, 6924
–6935
(2017
).80.
J. S.
Smith
, B.
Nebgen
, N.
Lubbers
, O.
Isayev
, and A. E.
Roitberg
, “Less is more: Sampling chemical space with active learning
,” J. Chem. Phys.
148
, 241733
(2018
).81.
L.
Zhang
, D.-Y.
Lin
, H.
Wang
, R.
Car
, and W.
E
, “Active learning of uniformly accurate interatomic potentials for materials simulation
,” Phys. Rev. Mater.
3
, 023804
(2019
).82.
J. P.
Janet
, C.
Duan
, T.
Yang
, A.
Nandy
, and H. J.
Kulik
, “A quantitative uncertainty metric controls error in neural network-driven chemical discovery
,” Chem. Sci.
10
, 7913
–7922
(2019
).83.
C.
Schran
, J.
Behler
, and D.
Marx
, “Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground
,” J. Chem. Theory Comput.
16
, 88
–99
(2020
).84.
C.
Schran
, K.
Brezina
, and O.
Marsalek
, “Committee neural network potentials control generalization errors and enable active learning
,” J. Chem. Phys.
153
, 104105
(2020
).85.
G.
Imbalzano
, Y.
Zhuang
, V.
Kapil
, K.
Rossi
, E. A.
Engel
, F.
Grasselli
, and M.
Ceriotti
, “Uncertainty estimation for molecular dynamics and sampling
,” J. Chem. Phys.
154
, 074102
(2021
).86.
B.
Settles
, “Active learning literature survey
,” Computer Sciences Technical Report No. 1648, University of Wisconsin–Madison
, 2009
.87.
M.
Abadi
, A.
Agarwal
, P.
Barham
, E.
Brevdo
, Z.
Chen
, C.
Citro
, G. S.
Corrado
, A.
Davis
, J.
Dean
, M.
Devin
, S.
Ghemawat
, I.
Goodfellow
, A.
Harp
, G.
Irving
, M.
Isard
, Y.
Jia
, R.
Jozefowicz
, L.
Kaiser
, M.
Kudlur
, J.
Levenberg
, D.
Mané
, R.
Monga
, S.
Moore
, D.
Murray
, C.
Olah
, M.
Schuster
, J.
Shlens
, B.
Steiner
, I.
Sutskever
, K.
Talwar
, P.
Tucker
, V.
Vanhoucke
, V.
Vasudevan
, F.
Viégas
, O.
Vinyals
, P.
Warden
, M.
Wattenberg
, M.
Wicke
, Y.
Yu
, and X.
Zheng
, “TensorFlow: Large-scale machine learning on heterogeneous systems
,” software available from https://www.tensorflow.org, 2015
.88.
A. P.
Thompson
, S. J.
Plimpton
, and W.
Mattson
, “General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
,” J. Chem. Phys.
131
, 154107
(2009
).89.
L.
Zhang
, J.
Han
, H.
Wang
, R.
Car
, and W.
E
, “Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,” Phys. Rev. Lett.
120
, 143001
(2018
).90.
Y.
Shao
, M.
Hellström
, P. D.
Mitev
, L.
Knijff
, and C.
Zhang
, “PiNN: A Python library for building atomic neural networks of molecules and materials
,” J. Chem. Inf. Model.
60
, 1184
–1193
(2020
).91.
M. J.
Gillan
, D.
Alfè
, and A.
Michaelides
, “Perspective: How good is DFT for water?
,” J. Chem. Phys.
144
, 130901
(2016
).92.
V.
Zaverkin
and J.
Kästner
, “Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design
,” Mach. Learn.: Sci. Technol.
2
, 035009
(2021
).93.
L. B.
Skinner
, C.
Huang
, D.
Schlesinger
, L. G. M.
Pettersson
, A.
Nilsson
, and C. J.
Benmore
, “Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range
,” J. Chem. Phys.
138
, 074506
(2013
).94.
A. K.
Soper
, “The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure?
,” ISRN Phys. Chem.
2013
, 279463
.95.
L.
Ruiz Pestana
, N.
Mardirossian
, M.
Head-Gordon
, and T.
Head-Gordon
, “Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals
,” Chem. Sci.
8
, 3554
–3565
(2017
).96.
I.-C.
Yeh
and G.
Hummer
, “System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
,” J. Phys. Chem. B
108
, 15873
–15879
(2004
).97.
M.
Holz
, S. R.
Heil
, and A.
Sacco
, “Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMRPFG measurements
,” Phys. Chem. Chem. Phys.
2
, 4740
–4742
(2000
).98.
D. J.
Price
and C. L.
Brooks
, “A modified TIP3P water potential for simulation with Ewald summation
,” J. Chem. Phys.
121
, 10096
–10103
(2004
).99.
R. A.
DiStasio
, B.
Santra
, Z.
Li
, X.
Wu
, and R.
Car
, “The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water
,” J. Chem. Phys.
141
, 084502
(2014
).100.
S.
Melchionna
, G.
Ciccotti
, and B. L.
Holian
, “Hoover NPT dynamics for systems varying in shape and size
,” Mol. Phys.
78
, 533
–544
(1993
).101.
S.
Melchionna
, “Constrained systems and statistical distribution
,” Phys. Rev. E
61
, 6165
–6170
(2000
).102.
B.
Hammer
, L.
Hansen
, and J.
Nørskov
, “Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
,” Phys. Rev. B
59
, 7413
(1999
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.