The accuracy of the training data limits the accuracy of bulk properties from machine-learned potentials. For example, hybrid functionals or wave-function-based quantum chemical methods are readily available for cluster data but effectively out of scope for periodic structures. We show that local, atom-centered descriptors for machine-learned potentials enable the prediction of bulk properties from cluster model training data, agreeing reasonably well with predictions from bulk training data. We demonstrate such transferability by studying structural and dynamical properties of bulk liquid water with density functional theory and have found an excellent agreement with experimental and theoretical counterparts.

1.
O.
Marsalek
and
T. E.
Markland
, “
Quantum dynamics and spectroscopy of ab initio liquid water: The interplay of nuclear and electronic quantum effects
,”
J. Phys. Chem. Lett.
8
,
1545
1551
(
2017
).
2.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
3.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
4.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
5.
M.
Rupp
,
A.
Tkatchenko
,
K. R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
6.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
7.
O. A.
von Lilienfeld
,
R.
Ramakrishnan
,
M.
Rupp
, and
A.
Knoll
, “
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
,”
Int. J. Quantum Chem.
115
,
1084
1093
(
2015
).
8.
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
1173
(
2016
).
9.
A.
Khorshidi
and
A. A.
Peterson
, “
Amp: A modular approach to machine learning in atomistic simulations
,”
Comput. Phys. Commun.
207
,
310
324
(
2016
).
10.
K.
Schütt
,
P.-J.
Kindermans
,
H. E.
Sauceda Felix
,
S.
Chmiela
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
,” in
NeurIPS 30
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
(
Curran Associates, Inc.
,
2017
), pp.
991
1001
.
11.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
von Lilienfeld
, “
Alchemical and structural distribution based representation for universal quantum machine learning
,”
J. Chem. Phys.
148
,
241717
(
2018
).
12.
E.
Kocer
,
J. K.
Mason
, and
H.
Erturk
, “
A novel approach to describe chemical environments in high-dimensional neural network potentials
,”
J. Chem. Phys.
150
,
154102
(
2019
).
13.
Y.
Zhang
,
C.
Hu
, and
B.
Jiang
, “
Embedded atom neural network potentials: Efficient and accurate machine learning with a physically inspired representation
,”
J. Phys. Chem. Lett.
10
,
4962
4967
(
2019
).
14.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
, “
FCHL revisited: Faster and more accurate quantum machine learning
,”
J. Chem. Phys.
152
,
044107
(
2020
).
15.
V.
Zaverkin
and
J.
Kästner
, “
Gaussian moments as physically inspired molecular descriptors for accurate and scalable machine learning potentials
,”
J. Chem. Theory Comput.
16
,
5410
5421
(
2020
).
16.
K. T.
Schütt
,
O. T.
Unke
, and
M.
Gastegger
, “
Equivariant message passing for the prediction of tensorial properties and molecular spectra
,” arXiv:2102.03150 (
2021
).
17.
N.
Artrith
and
A.
Urban
, “
An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
,”
Comput. Mater. Sci.
114
,
135
150
(
2016
).
18.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K. R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,”
Sci. Adv.
3
,
e1603015
(
2017
).
19.
K.
Gubaev
,
E. V.
Podryabinkin
, and
A. V.
Shapeev
, “
Machine learning of molecular properties: Locality and active learning
,”
J. Chem. Phys.
148
,
241727
(
2018
).
20.
N.
Lubbers
,
J. S.
Smith
, and
K.
Barros
, “
Hierarchical modeling of molecular energies using a deep neural network
,”
J. Chem. Phys.
148
,
241715
(
2018
).
21.
K.
Yao
,
J. E.
Herr
,
D. W.
Toth
,
R.
Mckintyre
, and
J.
Parkhill
, “
The TensorMol-0.1 model chemistry: A neural network augmented with long-range physics
,”
Chem. Sci.
9
,
2261
2269
(
2018
).
22.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
23.
A. M.
Cooper
,
J.
Kästner
,
A.
Urban
, and
N.
Artrith
, “
Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide
,”
npj Comput. Mater.
6
,
54
(
2020
).
24.
V.
Zaverkin
,
D.
Holzmüller
,
I.
Steinwart
, and
J.
Kästner
, “
Fast and sample-efficient interatomic neural network potentials for molecules and materials based on Gaussian moments
,”
J. Chem. Theory Comput.
17
,
6658
6670
(
2021
).
25.
K.
Hornik
, “
Approximation capabilities of multilayer feedforward networks
,”
Neural Networks
4
,
251
257
(
1991
).
26.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
, “
How van der Waals interactions determine the unique properties of water
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
8373
(
2016
).
27.
S.
Brickel
,
A. K.
Das
,
O. T.
Unke
,
H. T.
Turan
, and
M.
Meuwly
, “
Reactive molecular dynamics for the [Cl–CH3–Br] reaction in the gas phase and in solution: A comparative study using empirical and neural network force fields
,”
Electron. Struct.
1
,
024002
(
2019
).
28.
S.
Käser
,
O. T.
Unke
, and
M.
Meuwly
, “
Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces
,”
J. Chem. Phys.
152
,
214304
(
2020
).
29.
G.
Molpeceres
,
V.
Zaverkin
, and
J.
Kästner
, “
Neural-network assisted study of nitrogen atom dynamics on amorphous solid water—I. Adsorption and desorption
,”
Mon. Not. R. Astron. Soc.
499
,
1373
1384
(
2020
).
30.
S.
Tovey
,
A.
Narayanan Krishnamoorthy
,
G.
Sivaraman
,
J.
Guo
,
C.
Benmore
,
A.
Heuer
, and
C.
Holm
, “
DFT accurate interatomic potential for molten NaCl from machine learning
,”
J. Phys. Chem. C
124
,
25760
25768
(
2020
).
31.
P.
Korotaev
and
A.
Shapeev
, “
Lattice dynamics of YbxCo4Sb12 skutterudite by machine-learning interatomic potentials: Effect of filler concentration and disorder
,”
Phys. Rev. B
102
,
184305
(
2020
).
32.
M. F.
Calegari Andrade
,
H.-Y.
Ko
,
L.
Zhang
,
R.
Car
, and
A.
Selloni
, “
Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics
,”
Chem. Sci.
11
,
2335
2341
(
2020
).
33.
G.
Molpeceres
,
V.
Zaverkin
,
N.
Watanabe
, and
J.
Kästner
, “
Binding energies and sticking coefficients of H2 on crystalline and amorphous CO ice
,”
Astron. Astrophys.
648
,
A84
(
2021
).
34.
L.
Zhang
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Phase diagram of a deep potential water model
,”
Phys. Rev. Lett.
126
,
236001
(
2021
).
35.
T. B.
Blank
,
S. D.
Brown
,
A. W.
Calhoun
, and
D. J.
Doren
, “
Neural network models of potential energy surfaces
,”
J. Chem. Phys.
103
,
4129
4137
(
1995
).
36.
S.
Lorenz
,
A.
Groß
, and
M.
Scheffler
, “
Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks
,”
Chem. Phys. Lett.
395
,
210
215
(
2004
).
37.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
38.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
39.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
40.
S.
Faraji
,
S. A.
Ghasemi
,
S.
Rostami
,
R.
Rasoulkhani
,
B.
Schaefer
,
S.
Goedecker
, and
M.
Amsler
, “
High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride
,”
Phys. Rev. B
95
,
104105
(
2017
).
41.
A. K.
Rappe
and
W. A.
Goddard
, “
Charge equilibration for molecular dynamics simulations
,”
J. Phys. Chem.
95
,
3358
3363
(
1991
).
42.
C. E.
Wilmer
,
K. C.
Kim
, and
R. Q.
Snurr
, “
An extended charge equilibration method
,”
J. Phys. Chem. Lett.
3
,
2506
2511
(
2012
).
43.
Y.-T.
Cheng
,
T.-R.
Shan
,
T.
Liang
,
R. K.
Behera
,
S. R.
Phillpot
, and
S. B.
Sinnott
, “
A charge optimized many-body (comb) potential for titanium and titania
,”
J. Phys.: Condens. Matter
26
,
315007
(
2014
).
44.
M.
Gastegger
,
C.
Kauffmann
,
J.
Behler
, and
P.
Marquetand
, “
Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes
,”
J. Chem. Phys.
144
,
194110
(
2016
).
45.
B.
Monserrat
,
J. G.
Brandenburg
,
E. A.
Engel
, and
B.
Cheng
, “
Liquid water contains the building blocks of diverse ice phases
,”
Nat. Commun.
11
,
5757
(
2020
).
46.
P.
Rowe
,
V. L.
Deringer
,
P.
Gasparotto
,
G.
Csányi
, and
A.
Michaelides
, “
An accurate and transferable machine learning potential for carbon
,”
J. Chem. Phys.
153
,
034702
(
2020
).
47.
J.
Westermayr
and
P.
Marquetand
, “
Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space
,”
J. Chem. Phys.
153
,
154112
(
2020
).
48.
C.
Schran
,
F.
Brieuc
, and
D.
Marx
, “
Transferability of machine learning potentials: Protonated water neural network potential applied to the protonated water hexamer
,”
J. Chem. Phys.
154
,
051101
(
2021
).
49.
A.
Hajibabaei
,
M.
Ha
,
S.
Pourasad
,
J.
Kim
, and
K. S.
Kim
, “
Machine learning of first-principles force-fields for alkane and polyene hydrocarbons
,”
J. Phys. Chem. A
125
,
9414
9420
(
2021
).
50.
M. A.
Collins
and
V. A.
Deev
, “
Accuracy and efficiency of electronic energies from systematic molecular fragmentation
,”
J. Chem. Phys.
125
,
104104
(
2006
).
51.
H. M.
Netzloff
and
M. A.
Collins
, “
Ab initio energies of nonconducting crystals by systematic fragmentation
,”
J. Chem. Phys.
127
,
134113
(
2007
).
52.
M. A.
Collins
, “
Systematic fragmentation of large molecules by annihilation
,”
Phys. Chem. Chem. Phys.
14
,
7744
7751
(
2012
).
53.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
, “
Fragmentation methods: A route to accurate calculations on large systems
,”
Chem. Rev.
112
,
632
672
(
2012
).
54.
M. A.
Collins
and
R. P. A.
Bettens
, “
Energy-based molecular fragmentation methods
,”
Chem. Rev.
115
,
5607
5642
(
2015
).
55.
P.
Tröster
,
K.
Lorenzen
,
M.
Schwörer
, and
P.
Tavan
, “
Polarizable water models from mixed computational and empirical optimization
,”
J. Phys. Chem. B
117
,
9486
9500
(
2013
).
56.
D.
Koner
,
S. M.
Salehi
,
P.
Mondal
, and
M.
Meuwly
, “
Non-conventional force fields for applications in spectroscopy and chemical reaction dynamics
,”
J. Chem. Phys.
153
,
010901
(
2020
).
57.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
, “
Ab initio potential energy and dipole moment surfaces of (H2O)2
,”
J. Phys. Chem. A
110
,
445
451
(
2006
).
58.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
van der Avoird
, “
Predictions of the properties of water from first principles
,”
Science
315
,
1249
1252
(
2007
).
59.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Toward a universal water model: First principles simulations from the dimer to the liquid phase
,”
J. Phys. Chem. Lett.
3
,
3765
3769
(
2012
).
60.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
61.
X.
He
,
T.
Zhu
,
X.
Wang
,
J.
Liu
, and
J. Z. H.
Zhang
, “
Fragment quantum mechanical calculation of proteins and its applications
,”
Acc. Chem. Res.
47
,
2748
2757
(
2014
).
62.
J.
Liu
,
X.
He
,
J. Z. H.
Zhang
, and
L.-W.
Qi
, “
Hydrogen-bond structure dynamics in bulk water: Insights from ab initio simulations with coupled cluster theory
,”
Chem. Sci.
9
,
2065
2073
(
2018
).
63.
J.
Liu
,
J. Z. H.
Zhang
, and
X.
He
, “
Probing the ion-specific effects at the water/air interface and water-mediated ion pairing in sodium halide solution with ab initio molecular dynamics
,”
J. Phys. Chem. B
122
,
10202
10209
(
2018
).
64.
W. L.
Jorgensen
and
C.
Jenson
, “
Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density
,”
J. Comput. Chem.
19
,
1179
1186
(
1998
).
65.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
66.
Y.
Zhang
and
W.
Yang
, “
Comment on ‘Generalized gradient approximation made simple
,’”
Phys. Rev. Lett.
80
,
890
(
1998
).
67.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
68.
A.
Cooper
,
J.
Kästner
,
A.
Urban
, and
N.
Artrith
, “
Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide
,”
Materials Cloud Archive
2020.0037/v1 (
2020
).
69.
G.
Molpeceres
,
V.
Zaverkin
, and
J.
Kästner
, “
N-ASW: Molecular dynamics data [data set]
,” Zenodo.
70.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
71.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
72.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
, “
Turbomole
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
100
(
2014
).
73.
S.
Metz
,
J.
Kästner
,
A. A.
Sokol
,
T. W.
Keal
, and
P.
Sherwood
, “
ChemShell—A modular software package for QM/MM simulations
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
101
110
(
2014
).
74.
P.
Sherwood
,
A. H.
de Vries
,
M. F.
Guest
,
G.
Schreckenbach
,
C. R. A.
Catlow
,
S. A.
French
,
A. A.
Sokol
,
S. T.
Bromley
,
W.
Thiel
,
A. J.
Turner
,
S.
Billeter
,
F.
Terstegen
,
S.
Thiel
,
J.
Kendrick
,
S. C.
Rogers
,
J.
Casci
,
M.
Watson
,
F.
King
,
E.
Karlsen
,
M.
Sjøvoll
,
A.
Fahmi
,
A.
Schäfer
, and
C.
Lennartz
, “
QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis
,”
J. Mol. Struct.: THEOCHEM
632
,
1
28
(
2003
).
75.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
76.
V.
Zaverkin
,
D.
Holzmüller
,
R.
Schuldt
, and
J.
Kästner
, “
Predicting properties of periodic systems from cluster data: A case study of liquid water
,” [Data set] Zenodo.
77.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2015
).
78.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P.
Bjerre Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E.
Leonhard Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J.
Bergmann Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
79.
M.
Gastegger
,
J.
Behler
, and
P.
Marquetand
, “
Machine learning molecular dynamics for the simulation of infrared spectra
,”
Chem. Sci.
8
,
6924
6935
(
2017
).
80.
J. S.
Smith
,
B.
Nebgen
,
N.
Lubbers
,
O.
Isayev
, and
A. E.
Roitberg
, “
Less is more: Sampling chemical space with active learning
,”
J. Chem. Phys.
148
,
241733
(
2018
).
81.
L.
Zhang
,
D.-Y.
Lin
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Active learning of uniformly accurate interatomic potentials for materials simulation
,”
Phys. Rev. Mater.
3
,
023804
(
2019
).
82.
J. P.
Janet
,
C.
Duan
,
T.
Yang
,
A.
Nandy
, and
H. J.
Kulik
, “
A quantitative uncertainty metric controls error in neural network-driven chemical discovery
,”
Chem. Sci.
10
,
7913
7922
(
2019
).
83.
C.
Schran
,
J.
Behler
, and
D.
Marx
, “
Automated fitting of neural network potentials at coupled cluster accuracy: Protonated water clusters as testing ground
,”
J. Chem. Theory Comput.
16
,
88
99
(
2020
).
84.
C.
Schran
,
K.
Brezina
, and
O.
Marsalek
, “
Committee neural network potentials control generalization errors and enable active learning
,”
J. Chem. Phys.
153
,
104105
(
2020
).
85.
G.
Imbalzano
,
Y.
Zhuang
,
V.
Kapil
,
K.
Rossi
,
E. A.
Engel
,
F.
Grasselli
, and
M.
Ceriotti
, “
Uncertainty estimation for molecular dynamics and sampling
,”
J. Chem. Phys.
154
,
074102
(
2021
).
86.
B.
Settles
, “
Active learning literature survey
,” Computer Sciences Technical Report No. 1648,
University of Wisconsin–Madison
,
2009
.
87.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,” software available from https://www.tensorflow.org,
2015
.
88.
A. P.
Thompson
,
S. J.
Plimpton
, and
W.
Mattson
, “
General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
,”
J. Chem. Phys.
131
,
154107
(
2009
).
89.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
90.
Y.
Shao
,
M.
Hellström
,
P. D.
Mitev
,
L.
Knijff
, and
C.
Zhang
, “
PiNN: A Python library for building atomic neural networks of molecules and materials
,”
J. Chem. Inf. Model.
60
,
1184
1193
(
2020
).
91.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
130901
(
2016
).
92.
V.
Zaverkin
and
J.
Kästner
, “
Exploration of transferable and uniformly accurate neural network interatomic potentials using optimal experimental design
,”
Mach. Learn.: Sci. Technol.
2
,
035009
(
2021
).
93.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
, “
Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range
,”
J. Chem. Phys.
138
,
074506
(
2013
).
94.
A. K.
Soper
, “
The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure?
,”
ISRN Phys. Chem.
2013
,
279463
.
95.
L.
Ruiz Pestana
,
N.
Mardirossian
,
M.
Head-Gordon
, and
T.
Head-Gordon
, “
Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals
,”
Chem. Sci.
8
,
3554
3565
(
2017
).
96.
I.-C.
Yeh
and
G.
Hummer
, “
System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
,”
J. Phys. Chem. B
108
,
15873
15879
(
2004
).
97.
M.
Holz
,
S. R.
Heil
, and
A.
Sacco
, “
Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMRPFG measurements
,”
Phys. Chem. Chem. Phys.
2
,
4740
4742
(
2000
).
98.
D. J.
Price
and
C. L.
Brooks
, “
A modified TIP3P water potential for simulation with Ewald summation
,”
J. Chem. Phys.
121
,
10096
10103
(
2004
).
99.
R. A.
DiStasio
,
B.
Santra
,
Z.
Li
,
X.
Wu
, and
R.
Car
, “
The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water
,”
J. Chem. Phys.
141
,
084502
(
2014
).
100.
S.
Melchionna
,
G.
Ciccotti
, and
B. L.
Holian
, “
Hoover NPT dynamics for systems varying in shape and size
,”
Mol. Phys.
78
,
533
544
(
1993
).
101.
S.
Melchionna
, “
Constrained systems and statistical distribution
,”
Phys. Rev. E
61
,
6165
6170
(
2000
).
102.
B.
Hammer
,
L.
Hansen
, and
J.
Nørskov
, “
Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
,”
Phys. Rev. B
59
,
7413
(
1999
).
You do not currently have access to this content.