The behavior of shear-oscillated amorphous materials is studied using a coarse-grained model. Samples are prepared at different degrees of annealing and then subjected to athermal and quasi-static oscillatory deformations at various fixed amplitudes. The steady-state reached after several oscillations is fully determined by the initial preparation and the oscillation amplitude, as seen from stroboscopic stress and energy measurements. Under small oscillations, poorly annealed materials display shear-annealing, while ultra-stabilized materials are insensitive to them. Yet, beyond a critical oscillation amplitude, both kinds of materials display a discontinuous transition to the same mixed state composed of a fluid shear-band embedded in a marginal solid. Quantitative relations between uniform shear and the steady-state reached with this protocol are established. The transient regime characterizing the growth and the motion of the shear band is also studied.

1.
D.
Bonn
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
,
035005
(
2017
).
2.
A.
Nicolas
,
E. E.
Ferrero
,
K.
Martens
, and
J.-L.
Barrat
, “
Deformation and flow of amorphous solids: Insights from elastoplastic models
,”
Rev. Mod. Phys.
90
,
045006
(
2018
).
3.
Y.
Shi
and
M. L.
Falk
, “
Atomic-scale simulations of strain localization in three-dimensional model amorphous solids
,”
Phys. Rev. B
73
,
214201
(
2006
).
4.
M.
Ozawa
,
L.
Berthier
,
G.
Biroli
,
A.
Rosso
, and
G.
Tarjus
, “
Random critical point separates brittle and ductile yielding transitions in amorphous materials
,”
Proc. Natl. Acad. Sci.
115
,
6656
6661
(
2018
).
5.
M.
Popović
,
T. W. J.
de Geus
, and
M.
Wyart
, “
Elastoplastic description of sudden failure in athermal amorphous materials during quasistatic loading
,”
Phys. Rev. E
98
,
040901
(
2018
).
6.
H. J.
Barlow
,
J. O.
Cochran
, and
S. M.
Fielding
, “
Ductile and brittle yielding in thermal and athermal amorphous materials
,”
Phys. Rev. Lett.
125
,
168003
(
2020
).
7.
M.
Ozawa
,
L.
Berthier
,
G.
Biroli
, and
G.
Tarjus
, “
Rare events and disorder control the brittle yielding of amorphous solids
,” arXiv:2102.05846 (
2021
).
8.
D.
Richard
,
C.
Rainone
, and
E.
Lerner
, “
Finite-size study of the athermal quasistatic yielding transition in structural glasses
,”
J. Chem. Phys.
155
,
056101
(
2021
).
9.
S. M.
Fielding
, “
Yielding, shear banding and brittle failure of amorphous materials
,” arXiv:2103.06782 (
2021
).
10.
D.
Fiocco
,
G.
Foffi
, and
S.
Sastry
, “
Encoding of memory in sheared amorphous solids
,”
Phys. Rev. Lett.
112
,
025702
(
2014
).
11.
P.
Leishangthem
,
A. D. S.
Parmar
, and
S.
Sastry
, “
The yielding transition in amorphous solids under oscillatory shear deformation
,”
Nat. Commun.
8
,
14653
(
2017
).
12.
P.
Das
,
A. D. S.
Parmar
, and
S.
Sastry
, “
Annealing glasses by cyclic shear deformation
,” arXiv:1805.12476 (
2020
).
13.
D.
Hexner
,
A. J.
Liu
, and
S. R.
Nagel
, “
Periodic training of creeping solids
,”
Proc. Natl. Acad. Sci.
117
,
31690
31695
(
2020
).
14.
S.
Sastry
, “
Models for the yielding behavior of amorphous solids
,”
Phys. Rev. Lett.
126
,
255501
(
2021
).
15.
K.
Khirallah
,
B.
Tyukodi
,
D.
Vandembroucq
, and
C. E.
Maloney
, “
Yielding in an integer automaton model for amorphous solids under cyclic shear
,”
Phys. Rev. Lett.
126
,
218005
(
2021
).
16.
W.-T.
Yeh
,
M.
Ozawa
,
K.
Miyazaki
,
T.
Kawasaki
, and
L.
Berthier
, “
Glass stability changes the nature of yielding under oscillatory shear
,”
Phys. Rev. Lett.
124
,
225502
(
2020
).
17.
T.
Kawasaki
and
L.
Berthier
, “
Macroscopic yielding in jammed solids is accompanied by a nonequilibrium first-order transition in particle trajectories
,”
Phys. Rev. E
94
,
022615
(
2016
).
18.
I.
Regev
,
T.
Lookman
, and
C.
Reichhardt
, “
Onset of irreversibility and chaos in amorphous solids under periodic shear
,”
Phys. Rev. E
88
,
062401
(
2013
).
19.
I.
Regev
,
J.
Weber
,
C.
Reichhardt
,
K. A.
Dahmen
, and
T.
Lookman
, “
Reversibility and criticality in amorphous solids
,”
Nat. Commun.
6
,
8805
(
2015
).
20.
D.
Fiocco
,
G.
Foffi
, and
S.
Sastry
, “
Oscillatory athermal quasistatic deformation of a model glass
,”
Phys. Rev. E
88
,
020301
(
2013
).
21.
N. V.
Priezjev
, “
Reversible plastic events during oscillatory deformation of amorphous solids
,”
Phys. Rev. E
93
,
013001
(
2016
).
22.
N. V.
Priezjev
, “
Collective nonaffine displacements in amorphous materials during large-amplitude oscillatory shear
,”
Phys. Rev. E
95
,
023002
(
2017
).
23.
I.
Regev
and
T.
Lookman
, “
The irreversibility transition in amorphous solids under periodic shear
,” in
Avalanches in Functional Materials and Geophysics
(
Springer
,
2017
), pp.
227
259
.
24.
I.
Regev
and
T.
Lookman
, “
Critical diffusivity in the reversibility-irreversibility transition of amorphous solids under oscillatory shear
,”
J. Phys.: Condens. Matter
31
,
045101
(
2018
).
25.
M.
Mungan
,
S.
Sastry
,
K.
Dahmen
, and
I.
Regev
, “
Networks and hierarchies: How amorphous materials learn to remember
,”
Phys. Rev. Lett.
123
,
178002
(
2019
).
26.
H.
Bhaumik
,
G.
Foffi
, and
S.
Sastry
, “
The role of annealing in determining the yielding behavior of glasses under cyclic shear deformation
,”
Proc. Natl. Acad. Sci.
118
,
e2100227118
(
2021
).
27.
A. D. S.
Parmar
,
S.
Kumar
, and
S.
Sastry
, “
Strain localization above the yielding point in cyclically deformed glasses
,”
Phys. Rev. X
9
,
021018
(
2019
).
28.
P.
Das
,
H. A.
Vinutha
, and
S.
Sastry
, “
Unified phase diagram of reversible–irreversible, jamming, and yielding transitions in cyclically sheared soft-sphere packings
,”
Proc. Natl. Acad. Sci.
117
,
10203
10209
(
2020
).
29.
E. A.
Jagla
, “
Strain localization driven by structural relaxation in sheared amorphous solids
,”
Phys. Rev. E
76
,
046119
(
2007
).
30.
I.
Fernández Aguirre
and
E. A.
Jagla
, “
Critical exponents of the yielding transition of amorphous solids
,”
Phys. Rev. E
98
,
013002
(
2018
).
31.
E. E.
Ferrero
and
E. A.
Jagla
, “
Elastic interfaces on disordered substrates: From mean-field depinning to yielding
,”
Phys. Rev. Lett.
123
,
218002
(
2019
).
32.
E. A.
Jagla
, “
Tensorial description of the plasticity of amorphous composites
,”
Phys. Rev. E
101
,
043004
(
2020
).
33.
E. E.
Ferrero
and
E. A.
Jagla
, “
Properties of the density of shear transformations in driven amorphous solids
,”
J. Phys.: Condens. Matter
33
,
124001
(
2021
).
34.
J.
Lin
,
E.
Lerner
,
A.
Rosso
, and
M.
Wyart
, “
Scaling description of the yielding transition in soft amorphous solids at zero temperature
,”
Proc. Natl. Acad. Sci.
111
,
14382
14387
(
2014
).
35.
J. D.
Eshelby
, “
The determination of the elastic field of an ellipsoidal inclusion, and related problems
,”
Proc. R. Soc. A
241
,
376
396
(
1957
).
36.
M. L.
Manning
,
J. S.
Langer
, and
J. M.
Carlson
, “
Strain localization in a shear transformation zone model for amorphous solids
,”
Phys. Rev. E
76
,
056106
(
2007
).
37.
E. A.
Jagla
, “
Shear band dynamics from a mesoscopic modeling of plasticity
,”
J. Stat. Mech.: Theory Exp.
2010
,
P12025
.
38.
N.
Mangan
,
C.
Reichhardt
, and
C. J. O.
Reichhardt
, “
Reversible to irreversible flow transition in periodically driven vortices
,”
Phys. Rev. Lett.
100
,
187002
(
2008
).
39.
S.
Okuma
,
Y.
Tsugawa
, and
A.
Motohashi
, “
Transition from reversible to irreversible flow: Absorbing and depinning transitions in a sheared-vortex system
,”
Phys. Rev. B
83
,
012503
(
2011
).
40.
B. L.
Brown
,
C.
Reichhardt
, and
C. J. O.
Reichhardt
, “
Reversible to irreversible transitions in periodically driven skyrmion systems
,”
New J. Phys.
21
,
013001
(
2019
).
41.
S.
Maegochi
,
K.
Ienaga
, and
S.
Okuma
, “
Critical behavior of density-driven and shear-driven reversible–irreversible transitions in cyclically sheared vortices
,”
Sci. Rep.
11
,
19280
(
2021
).
42.
X.
Cao
,
A.
Nicolas
,
D.
Trimcev
, and
A.
Rosso
, “
Soft modes and strain redistribution in continuous models of amorphous plasticity: The Eshelby paradigm, and beyond?
,”
Soft Matter
14
,
3640
3651
(
2018
).
43.
D.
Denisov
,
M.
Dang
,
B.
Struth
 et al., “
Sharp symmetry-change marks the mechanical failure transition of glasses
,”
Sci. Rep.
5
,
14359
(
2015
), https://www.nature.com/articles/srep14359.
You do not currently have access to this content.