Phenol is an important model compound to understand the thermocatalytic (TCH) and electrocatalytic hydrogenation (ECH) of biomass to biofuels. Although Pt and Rh are among the most studied catalysts for aqueous-phase phenol hydrogenation, the reason why certain facets are active for ECH and TCH is not fully understood. Herein, we identify the active facet of Pt and Rh catalysts for aqueous-phase hydrogenation of phenol and explain the origin of the size-dependent activity trends of Pt and Rh nanoparticles. Phenol adsorption energies extracted on the active sites of Pt and Rh nanoparticles on carbon by fitting kinetic data show that the active sites adsorb phenol weakly. We predict that the turnover frequencies (TOFs) for the hydrogenation of phenol to cyclohexanone on Pt(111) and Rh(111) terraces are higher than those on (221) stepped facets based on density functional theory modeling and mean-field microkinetic simulations. The higher activities of the (111) terraces are due to lower activation energies and weaker phenol adsorption, preventing high coverages of phenol from inhibiting hydrogen adsorption. We measure that the TOF for ECH of phenol increases as the Rh nanoparticle diameter increases from 2 to 10 nm at 298 K and −0.1 V vs the reversible hydrogen electrode, qualitatively matching prior reports for Pt nanoparticles. The increase in experimental TOFs as Pt and Rh nanoparticle diameters increase is due to a larger fraction of terraces on larger particles. These findings clarify the structure sensitivity and active site of Pt and Rh for the hydrogenation of phenol and will inform the catalyst design for the hydrogenation of bio-oils.

1.
F. X.
Aguilar
and
A.
Saunders
,
J. For.
108
,
132
(
2010
).
2.
E. J.
Biddinger
,
O. Y.
Gutierrez
, and
J.
Holladay
,
J. Appl. Electrochem.
51
,
1
(
2021
).
3.
M.
Garedew
,
C. H.
Lam
,
L.
Petitjean
,
S.
Huang
,
B.
Song
,
F.
Lin
,
J. E.
Jackson
,
C. M.
Saffron
, and
P. T.
Anastas
,
Green Chem.
23
,
2868
(
2021
).
4.
Y.
Zhu
,
M. J.
Biddy
,
S. B.
Jones
,
D. C.
Elliott
, and
A. J.
Schmidt
,
Appl. Energy
129
,
384
(
2014
).
5.
P. A.
Meyer
,
L. J.
Snowden-Swan
,
K. G.
Rappé
,
S. B.
Jones
,
T. L.
Westover
, and
K. G.
Cafferty
,
Energy Fuels
30
,
9427
(
2016
).
6.
S. A.
Akhade
,
N.
Singh
,
O. Y.
Gutiérrez
,
J.
Lopez-Ruiz
,
H.
Wang
,
J. D.
Holladay
,
Y.
Liu
,
A.
Karkamkar
,
R. S.
Weber
,
A. B.
Padmaperuma
,
M.-S.
Lee
,
G. A.
Whyatt
,
M.
Elliott
,
J. E.
Holladay
,
J. L.
Male
,
J. A.
Lercher
,
R.
Rousseau
, and
V.-A.
Glezakou
,
Chem. Rev.
120
,
11370
(
2020
).
7.
F. W. S.
Lucas
,
R. G.
Grim
,
S. A.
Tacey
,
C. A.
Downes
,
J.
Hasse
,
A. M.
Roman
,
C. A.
Farberow
,
J. A.
Schaidle
, and
A.
Holewinski
,
ACS Energy Lett.
6
,
1205
(
2021
).
8.
H.
Wang
,
S.-J.
Lee
,
M. V.
Olarte
, and
A. H.
Zacher
,
ACS Sustainable Chem. Eng.
4
,
5533
(
2016
).
9.
M.
Garedew
,
D.
Young-Farhat
,
J. E.
Jackson
, and
C. M.
Saffron
,
ACS Sustainable Chem. Eng.
7
,
8375
(
2019
).
10.
N.
Singh
,
U.
Sanyal
,
G.
Ruehl
,
K. A.
Stoerzinger
,
O. Y.
Gutiérrez
,
D. M.
Camaioni
,
J. L.
Fulton
,
J. A.
Lercher
, and
C. T.
Campbell
,
J. Catal.
382
,
372
(
2020
).
11.
U.
Sanyal
,
Y.
Song
,
N.
Singh
,
J. L.
Fulton
,
J.
Herranz
,
A.
Jentys
,
O. Y.
Gutiérrez
, and
J. A.
Lercher
,
ChemCatChem
11
,
575
(
2019
).
12.
K.
Sasaki
,
A.
Kunai
,
J.
Harada
, and
S.
Nakabori
,
Electrochim. Acta
28
,
671
(
1983
).
13.
Y.
Song
,
S. H.
Chia
,
U.
Sanyal
,
O. Y.
Gutiérrez
, and
J. A.
Lercher
,
J. Catal.
344
,
263
(
2016
).
14.
N.
Singh
,
Y.
Song
,
O. Y.
Gutiérrez
,
D. M.
Camaioni
,
C. T.
Campbell
, and
J. A.
Lercher
,
ACS Catal.
6
,
7466
(
2016
).
15.
Y.
Song
,
O. Y.
Gutiérrez
,
J.
Herranz
, and
J. A.
Lercher
,
Appl. Catal., B
182
,
236
(
2016
).
16.
U.
Sanyal
,
K.
Koh
,
L. C.
Meyer
,
A.
Karkamkar
, and
O. Y.
Gutiérrez
,
J. Appl. Electrochem.
51
,
27
(
2021
).
17.
P.
Sabatier
,
Ber. Dtsch. Chem. Ges.
44
,
1984
(
1911
).
18.
N.
Singh
and
C. T.
Campbell
,
ACS Catal.
9
,
8116
(
2019
).
19.
J.
Akinola
,
I.
Barth
,
B. R.
Goldsmith
, and
N.
Singh
,
ACS Catal.
10
,
4929
(
2020
).
20.
G. W.
Huber
,
S.
Iborra
, and
A.
Corma
,
Chem. Rev.
106
,
4044
(
2006
).
21.
G.
Bagnato
,
A.
Sanna
,
E.
Paone
, and
E.
Catizzone
,
Catalysts
11
,
157
(
2021
).
22.
E.
Gileadi
,
J. Electroanal. Chem.
11
,
137
(
1966
).
23.
P.
Clabaut
,
B.
Schweitzer
,
A. W.
Götz
,
C.
Michel
, and
S. N.
Steinmann
,
J. Chem. Theory Comput.
16
,
6539
(
2020
).
24.
M.
Saleheen
,
M.
Zare
,
M.
Faheem
, and
A.
Heyden
,
J. Phys. Chem. C
123
,
19052
(
2019
).
25.
Z.
Zhao
,
R.
Bababrik
,
W.
Xue
,
Y.
Li
,
N. M.
Briggs
,
D.-T.
Nguyen
,
U.
Nguyen
,
S. P.
Crossley
,
S.
Wang
,
B.
Wang
, and
D. E.
Resasco
,
Nat. Catal.
2
,
431
(
2019
).
26.
A. J. R.
Hensley
,
Y.
Wang
,
D.
Mei
, and
J.-S.
McEwen
,
ACS Catal.
8
,
2200
(
2018
).
27.
Y.
Yoon
,
R.
Rousseau
,
R. S.
Weber
,
D.
Mei
, and
J. A.
Lercher
,
J. Am. Chem. Soc.
136
,
10287
(
2014
).
28.
G.
Li
,
Z.
Zhao
,
T.
Mou
,
Q.
Tan
,
B.
Wang
, and
D.
Resasco
,
J. Catal.
404
,
771
(
2021
).
29.
B.
Schweitzer
,
S. N.
Steinmann
, and
C.
Michel
,
Phys. Chem. Chem. Phys.
21
,
5368
(
2019
).
30.
N.
Singh
,
M.-S.
Lee
,
S. A.
Akhade
,
G.
Cheng
,
D. M.
Camaioni
,
O. Y.
Gutiérrez
,
V.-A.
Glezakou
,
R.
Rousseau
,
J. A.
Lercher
, and
C. T.
Campbell
,
ACS Catal.
9
,
1120
(
2019
).
31.
N.
Singh
,
U.
Sanyal
,
J. L.
Fulton
,
O. Y.
Gutiérrez
,
J. A.
Lercher
, and
C. T.
Campbell
,
ACS Catal.
9
,
6869
(
2019
).
32.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
33.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
34.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
35.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
36.
A.
Hjorth Larsen
,
J.
Jørgen Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P.
Bjerre Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E.
Leonhard Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J.
Bergmann Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
,
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
38.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
39.
J.
Klimeš
and
A.
Michaelides
,
J. Chem. Phys.
137
,
120901
(
2012
).
40.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
41.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
42.
M.
Methfessel
and
A. T.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).
43.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
44.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
45.
Y.
Abghoui
and
E.
Skúlason
,
J. Phys. Chem. C
121
,
24036
(
2017
).
46.
B. E.
Conway
and
G.
Jerkiewicz
,
Electrochim. Acta
45
,
4075
(
2000
).
47.
C.
Li
,
H.
Gao
,
W.
Wan
, and
T.
Mueller
,
Phys. Chem. Chem. Phys.
21
,
24489
(
2019
).
48.
E.
Skúlason
,
G. S.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
J.
Greeley
,
H.
Jónsson
, and
J. K.
Nørskov
,
Phys. Chem. Chem. Phys.
9
,
3241
(
2007
).
49.
M. K.
Sabbe
,
G.
Canduela-Rodriguez
,
J.-F.
Joly
,
M.-F.
Reyniers
, and
G. B.
Marin
,
Catal. Sci. Technol.
7
,
5267
(
2017
).
50.
I. A. W.
Filot
,
R. A.
van Santen
, and
E. J. M.
Hensen
,
Angew. Chem., Int. Ed.
53
,
12746
(
2014
).
51.
M.
Faheem
,
M.
Saleheen
,
J.
Lu
, and
A.
Heyden
,
Catal. Sci. Technol.
6
,
8242
(
2016
).
52.
T.
Xie
,
C. J.
Bodenschatz
, and
R. B.
Getman
,
React. Chem. Eng.
4
,
383
(
2019
).
53.
K.
Mathew
,
R.
Sundararaman
,
K.
Letchworth-Weaver
,
T. A.
Arias
, and
R. G.
Hennig
,
J. Chem. Phys.
140
,
084106
(
2014
).
54.
K.
Mathew
,
V. S. C.
Kolluru
,
S.
Mula
,
S. N.
Steinmann
, and
R. G.
Hennig
,
J. Chem. Phys.
151
,
234101
(
2019
).
55.
R.
Sander
,
Atmos. Chem. Phys.
15
,
4399
(
2015
).
56.
Y.
Song
,
U.
Sanyal
,
D.
Pangotra
,
J. D.
Holladay
,
D. M.
Camaioni
,
O. Y.
Gutiérrez
, and
J. A.
Lercher
,
J. Catal.
359
,
68
(
2018
).
57.
A.
Wieckowski
,
J.
Sobrowski
,
P.
Zelenay
, and
K.
Franaszczuk
,
Electrochim. Acta
26
,
1111
(
1981
).
58.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
, 2nd ed. (
John Wiley & Sons
,
New York
,
2001
).
59.
B.
Efron
and
G.
Gong
,
Am. Stat.
37
,
36
(
1983
).
60.
M. S.
Caceci
,
Anal. Chem.
61
,
2324
(
1989
).
61.
H.
Li
and
Z.
Ding
,
Chem. Phys. Lett.
746
,
137287
(
2020
).
62.
Y.
Li
,
Z.
Liu
,
S. P.
Crossley
,
F. C.
Jentoft
, and
S.
Wang
,
Appl. Surf. Sci.
443
,
575
(
2018
).
63.
C. T.
Campbell
,
ACS Catal.
7
,
2770
(
2017
).
64.
G.
Yang
,
V.
Maliekkal
,
X.
Chen
,
S.
Eckstein
,
H.
Shi
,
D. M.
Camaioni
,
E.
Baráth
,
G. L.
Haller
,
Y.
Liu
,
M.
Neurock
, and
J. A.
Lercher
,
J. Catal.
404
,
579
(
2021
).
65.
G.
Li
,
J.
Han
,
H.
Wang
,
X.
Zhu
, and
Q.
Ge
,
ACS Catal.
5
,
2009
(
2015
).
66.
A.
Le Valant
,
C.
Comminges
,
F.
Can
,
K.
Thomas
,
M.
Houalla
, and
F.
Epron
,
J. Phys. Chem. C
120
,
26374
(
2016
).
67.
R.
Van Hardeveld
and
F.
Hartog
,
Surf. Sci.
15
,
189
(
1969
).
68.
M. J.
Lundwall
,
S. M.
McClure
, and
D. W.
Goodman
,
J. Phys. Chem. C
114
,
7904
(
2010
).
69.
G.
Jones
,
J. G.
Jakobsen
,
S. S.
Shim
,
J.
Kleis
,
M. P.
Andersson
,
J.
Rossmeisl
,
F.
Abild-Pedersen
,
T.
Bligaard
,
S.
Helveg
,
B.
Hinnemann
,
J. R.
Rostrup-Nielsen
,
I.
Chorkendorff
,
J.
Sehested
, and
J. K.
Nørskov
,
J. Catal.
259
,
147
(
2008
).
70.
A.
Borodziński
and
M.
Bonarowska
,
Langmuir
13
,
5613
(
1997
).
71.
P.
Urchaga
,
S.
Baranton
,
T. W.
Napporn
, and
C.
Coutanceau
,
Electrocatalysis
1
,
3
(
2010
).
72.
M. H.
Huang
and
P.-H.
Lin
,
Adv. Funct. Mater.
22
,
14
(
2012
).
73.
L.
Bu
,
Y.
Feng
,
J.
Yao
,
S.
Guo
,
J.
Guo
, and
X.
Huang
,
Nano Res.
9
,
2811
(
2016
).

Supplementary Material

You do not currently have access to this content.