It is generally not straightforward to apply molecular-thermodynamic theories to fluids with short-ranged attractive forces between their constituent molecules (or particles). This especially applies to perturbation theories, which, for short-ranged attractive fluids, typically must be extended to high order or may not converge at all. Here, we show that a recent first-order perturbation theory, the uv-theory, holds promise for describing such fluids. As a case study, we apply the uv-theory to a fluid with pair interactions defined by the Lennard-Jones spline potential, which is a short-ranged version of the LJ potential that is known to provide a challenge for equation-of-state development. The results of the uv-theory are compared to those of third-order Barker–Henderson and fourth-order Weeks–Chandler–Andersen perturbation theories, which are implemented using Monte Carlo simulation results for the respective perturbation terms. Theoretical predictions are compared to an extensive dataset of molecular simulation results from this (and previous) work, including vapor–liquid equilibria, first- and second-order derivative properties, the critical region, and metastable states. The uv-theory proves superior for all properties examined. An especially accurate description of metastable vapor and liquid states is obtained, which might prove valuable for future applications of the equation-of-state model to inhomogeneous phases or nucleation processes. Although the uv-theory is analytic, it accurately describes molecular simulation results for both the critical point and the binodal up to at least 99% of the critical temperature. This suggests that the difficulties typically encountered in describing the vapor–liquid critical region are only to a small extent caused by non-analyticity.

1.
C. G.
Gray
and
K. E.
Gubbins
,
Theory of Molecular Fluids
, 1st ed. (
Oxford University Press
,
New York
,
1984
).
2.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
London
,
2006
).
3.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
4.
W. R.
Smith
, in
Statistical Mechanics
, edited by
K.
Singer
(
The Royal Society of Chemistry
,
Cambridge
,
1973
), Vol. 1, Chap. 2, pp.
71
133
.
5.
W. R.
Smith
,
Can. J. Phys.
52
,
2022
(
1974
).
6.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
7.
H. C.
Andersen
,
D.
Chandler
, and
J. D.
Weeks
,
Adv. Chem. Phys.
34
,
105
(
1976
).
8.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
9.
D.
Chandler
and
J. D.
Weeks
,
Phys. Rev. Lett.
25
,
149
(
1970
).
10.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
11.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
,
Phys. Rev. A
4
,
1597
(
1971
).
12.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
19
(
1984
).
13.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
35
(
1984
).
14.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
459
(
1986
).
15.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
477
(
1986
).
16.
W. G.
Chapman
and
K. E.
Gubbins
,
Fluid Phase Equilib.
29
,
337
(
1986
).
17.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1
(
1988
).
18.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
19.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Ind. Eng. Chem. Res.
29
,
1709
(
1990
).
20.
A.
Gil-Villegas
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
,
J. Chem. Phys.
106
,
4168
(
1997
).
21.
J.
Gross
and
G.
Sadowski
,
Ind. Eng. Chem. Res.
40
,
1244
(
2001
).
22.
T.
Lafitte
,
A.
Apostolakou
,
C.
Avendaño
,
A.
Galindo
,
C. S.
Adjiman
,
E. A.
Müller
, and
G.
Jackson
,
J. Chem. Phys.
139
,
154504
(
2013
).
23.
C.
McCabe
and
A.
Galindo
, in
Applied Thermodynamics of Fluids
, edited by
A. R. H.
Goodwin
,
J. V.
Sengers
, and
C. J.
Peters
(
The Royal Society of Chemistry
,
Cambridge
,
2010
), Chap. 8, pp.
215
279
.
24.
K. P.
Shukla
,
J. Chem. Phys.
112
,
10358
(
2000
).
25.
R.
Espíndola-Heredia
,
F.
del Río
, and
A.
Malijevsky
,
J. Chem. Phys.
130
,
024509
(
2009
).
26.
Y. T.
Pavlyukhin
,
J. Struct. Chem.
53
,
476
(
2012
).
27.
S.
Rivera-Torres
,
F.
del Río
,
R.
Espíndola-Heredia
,
J.
Kolafa
, and
A.
Malijevský
,
J. Mol. Liq.
185
,
44
(
2013
).
28.
F.
Sastre
,
M. G.
Sotelo-Serna
,
E.
Moreno-Hilario
, and
A. L.
Benavides
,
Mol. Phys.
119
,
e1887527
(
2021
).
29.
C.
Caccamo
,
G.
Pellicane
,
D.
Costa
,
D.
Pini
, and
G.
Stell
,
Phys. Rev. E
60
,
5533
(
1999
).
30.
D.
Pini
,
A.
Parola
, and
L.
Reatto
,
Mol. Phys.
100
,
1507
(
2002
).
31.
32.
P.
Orea
,
C.
Tapia-Medina
,
D.
Pini
, and
A.
Reiner
,
J. Chem. Phys.
132
,
114108
(
2010
).
33.
D.
Pini
,
A.
Parola
,
J.
Colombo
, and
L.
Reatto
,
Mol. Phys.
109
,
1343
(
2002
).
34.
M.
Khanpour
,
Phys. Rev. E
83
,
021203
(
2011
).
35.
N. E.
Valadez-Pérez
,
A. L.
Benavides
,
E.
Schöll-Paschinger
, and
R.
Castañeda-Priego
,
J. Chem. Phys.
137
,
084905
(
2012
).
36.
D.
Gazzillo
and
D.
Pini
,
J. Chem. Phys.
139
,
164501
(
2013
).
37.
J.
Largo
,
M. A.
Miller
, and
F.
Sciortino
,
J. Chem. Phys.
128
,
134513
(
2008
).
38.
F.
Sastre
,
A. L.
Benavides
,
J.
Torres-Arenas
, and
A.
Gil-Villegas
,
Phys. Rev. E
92
,
033303
(
2015
).
39.
F.
Sastre
,
E.
Moreno-Hilario
,
M. G.
Sotelo-Serna
, and
A.
Gil-Villegas
,
Mol. Phys.
116
,
351
(
2017
).
40.
J. M.
Kincaid
,
G.
Stell
, and
C. K.
Hall
,
J. Chem. Phys.
65
,
2161
(
1967
).
41.
G.
Stell
and
O.
Penrose
,
Phys. Rev. Lett.
51
,
1397
(
1983
).
42.
S.
Zhou
and
J. R.
Solana
,
J. Chem. Phys.
138
,
244115
(
2013
).
43.
A. F.
Ghobadi
and
J. R.
Elliott
,
J. Chem. Phys.
139
,
234104
(
2013
).
44.
T.
van Westen
and
J.
Gross
,
J. Chem. Phys.
147
,
014503
(
2017
).
45.
T.
van Westen
and
J.
Gross
,
J. Chem. Phys.
155
,
244501
(
2021
).
46.
B. L.
Holian
and
D. J.
Evans
,
J. Chem. Phys.
78
,
5147
(
1983
).
47.
B.
Hafskjold
,
K. P.
Travis
,
A. B.
Hass
,
M.
Hammer
,
A.
Aasen
, and
Ø.
Wilhelmsen
,
Mol. Phys.
117
,
3754
(
2019
).
48.
M.
Thol
,
G.
Rutkai
,
R.
Span
,
J.
Vrabec
, and
R.
Lustig
,
Int. J. Thermophys.
36
,
25
(
2015
).
49.
M.
Heier
,
S.
Stephan
,
J.
Liu
,
W. G.
Chapman
,
H.
Hasse
, and
K.
Langenbach
,
Mol. Phys.
116
,
2083
(
2018
).
50.
X.
Wang
,
S.
Ramírez-Hinestrosa
,
J.
Dobnikar
, and
D.
Frenkel
,
Phys. Chem. Chem. Phys.
22
,
10624
(
2020
).
51.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
52.
J. A.
Barker
,
Proc. R. Soc. London, Ser. A
241
,
547
(
1957
).
53.
K. E.
Gubbins
,
W. R.
Smith
,
M. K.
Tham
, and
E. W.
Tiepel
,
Mol. Phys.
22
,
1089
(
1971
).
54.
D.
Ben-Amotz
and
G.
Stell
,
J. Phys. Chem. B
108
,
6877
(
2004
).
55.
E.
Meeron
and
A. J. F.
Siegert
,
J. Chem. Phys.
48
,
3139
(
1968
).
56.
D.
Ben-Amotz
and
D. R.
Herschbach
,
J. Phys. Chem.
97
,
2295
(
1993
).
57.
L. E. S.
de Souza
and
D.
Ben-Amotz
,
Mol. Phys.
78
,
137
(
1993
).
58.
Ø.
Wilhelmsen
,
A.
Aasen
,
G.
Skaugen
,
P.
Aursand
,
A.
Austegard
,
E.
Aursand
,
M. A.
Gjennestad
,
H.
Lund
,
G.
Linga
, and
M.
Hammer
,
Ind. Eng. Chem. Res.
56
,
3503
(
2017
).
59.
SINTEF Energy Research, Thermopack open source thermodynamics library, https://github.com/SINTEF/thermopack/,
2020
.
60.
A.
Isihara
,
J. Phys. A: Gen. Phys.
1
,
539
(
1968
).
61.
T.
van Westen
and
J.
Gross
,
J. Chem. Phys.
154
,
041102
(
2021
).
62.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
San Diego
,
2002
).
63.
A.
Hemmen
,
A. Z.
Panagiotopoulos
, and
J.
Gross
,
J. Phys. Chem. B
119
,
7087
(
2015
).
64.
M.
Fitzgerald
,
R. R.
Picard
, and
R. N.
Silver
,
Europhys. Lett.
46
,
282
(
1999
).
65.
J.-S.
Wang
,
T. K.
Tay
, and
R. H.
Swendsen
,
Phys. Rev. Lett.
82
,
476
(
1999
).
66.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
67.
N. B.
Wilding
and
M.
Müller
,
J. Chem. Phys.
102
,
2562
(
1995
).
68.
N. B.
Wilding
,
J. Chem. Phys.
9
,
585
(
1997
).
69.
A. Z.
Panagiotopoulos
,
J. Phys.: Condens. Matter
12
,
R25
(
2000
).
70.
M. E.
Fisher
,
Rev. Mod. Phys.
70
,
653
(
1998
).
71.
M. A.
Anisimov
and
J. V.
Sengers
, in
Equations of State for Fluids and Fluid Mixtures
, edited by
J. V.
Sengers
,
R. F.
Kayser
,
C. J.
Peters
, and
H. J.
White
(
Elsevier
,
Amsterdam
,
2000
), Chap. 11, pp.
381
434
.
72.
H. B.
Callen
, in
Thermodynamics and an Introduction to Thermostatistics
, 2nd ed. (
John Wiley & Sons, Inc.
,
New York
,
1985
), Chap. 10.
73.
A. F.
Ghobadi
and
J. R.
Elliott
,
J. Chem. Phys.
143
,
114107
(
2015
).
74.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer-Verlag
,
Berlin
,
2006
).
75.
M.
Schrader
,
P.
Virnau
, and
K.
Binder
,
Phys. Rev. E
79
,
061104
(
2009
).
77.
G. A.
Vliegenthart
and
H. N. W.
Lekkerkerker
,
J. Chem. Phys.
112
,
5364
(
2000
).
78.
J. K.
Percus
and
G. J.
Yevick
,
Phys. Rev.
110
,
1
(
1958
).
79.
J.
Chang
and
S. I.
Sandler
,
Mol. Phys.
81
,
735
(
1994
).
80.
L.
Verlet
and
J.-J.
Weis
,
Phys. Rev. A
5
,
939
(
1972
).
81.
T.
van Westen
,
J. Chem. Phys.
154
,
234502
(
2021
).
82.
M.
Hammer
,
A.
Aasen
, and
Ø
Wilhelmsen
(
2020
). “
Thermopack
,” Github. https://github.com/SINTEF/thermopack.

Supplementary Material

You do not currently have access to this content.