Extending on the previous work by Riera et al. [J. Chem. Theory Comput. 16, 2246–2257 (2020)], we introduce a second generation family of data-driven many-body MB-nrg models for CO2 and systematically assess how the strength and anisotropy of the CO2–CO2 interactions affect the models’ ability to predict vapor, liquid, and vapor–liquid equilibrium properties. Building upon the many-body expansion formalism, we construct a series of MB-nrg models by fitting one-body and two-body reference energies calculated at the coupled cluster level of theory for large monomer and dimer training sets. Advancing from the first generation models, we employ the charge model 5 scheme to determine the atomic charges and systematically scale the two-body energies to obtain more accurate descriptions of vapor, liquid, and vapor–liquid equilibrium properties. Challenges in model construction arise due to the anisotropic nature and small magnitude of the interaction energies in CO2, calling for the necessity of highly accurate descriptions of the multidimensional energy landscape of liquid CO2. These findings emphasize the key role played by the training set quality in the development of transferable, data-driven models, which, accurately representing high-dimensional many-body effects, can enable predictive computer simulations of molecular fluids across the entire phase diagram.

1.
S.
Solomon
,
G.-K.
Plattner
,
R.
Knutti
, and
P.
Friedlingstein
, “
Irreversible climate change due to carbon dioxide emissions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
1704
1709
(
2009
).
2.
J. H.
Seinfeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
, 3rd ed. (
Wiley
,
2016
), p.
1152
.
3.
J. N.
Butler
,
Carbon Dioxide Equilibria and Their Applications
(
Routledge
,
2019
).
4.
K.
Caldeira
and
M. E.
Wickett
, “
Oceanography: Anthropogenic carbon and ocean pH
,”
Nature
425
,
365
(
2003
).
5.
J. L.
Wadham
,
J. R.
Hawkings
,
L.
Tarasov
,
L. J.
Gregoire
,
R. G. M.
Spencer
,
M.
Gutjahr
,
A.
Ridgwell
, and
K. E.
Kohfeld
, “
Ice sheets matter for the global carbon cycle
,”
Nat. Commun.
10
,
3567
(
2019
).
6.
IPCC, 2019: Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems
,” edited by
P.
Shukla
,
J.
Skea
,
E. C.
Buendia
,
V.
Masson-Delmotte
,
H.-O.
Pörtner
,
D. C.
Roberts
,
P.
Zhai
,
R.
Slade
,
S.
Connors
,
R.
van Diemen
,
M.
Ferrat
,
E.
Haughey
,
S.
Luz
,
S.
Neogi
,
M.
Pathak
,
J.
Petzold
,
J. P.
Pereira
,
P.
Vyas
,
E.
Huntley
,
K.
Kissick
,
M.
Belkacemi
, and
J.
Malley
(in press).
7.
K.
Michael
,
A.
Golab
,
V.
Shulakova
,
J.
Ennis-King
,
G.
Allinson
,
S.
Sharma
, and
T.
Aiken
, “
Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations
,”
Int. J. Greenhouse Gas Control
4
,
659
667
(
2010
).
8.
L. M.
Anovitz
,
T. C.
Labotka
,
J. G.
Blencoe
, and
J.
Horita
, “
Experimental determination of the activity-composition relations and phase equilibria of H2O-CO2-NaCl fluids at 500 °C, 500 bars
,”
Geochim. Cosmochim. Acta
68
,
3557
3567
(
2004
).
9.
Y.
Ji
,
X.
Ji
,
X.
Feng
,
C.
Liu
,
L.
, and
X.
Lu
, “
Progress in the study on the phase equilibria of the CO2-H2O and CO2-H2O-NaCl systems
,”
Chin. J. Chem. Eng.
15
,
439
448
(
2007
).
10.
G. K.
Jacobs
and
D. M.
Kerrick
, “
Methane: An equation of state with application to the ternary system H2O–CO2–CH4
,”
Geochim. Cosmochim. Acta
45
,
607
614
(
1981
).
11.
T. S.
Bowers
and
H. C.
Helgeson
, “
Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geologic systems: Equation of state for H2O–CO2–NaCl fluids at high pressures and temperatures
,”
Geochim. Cosmochim. Acta
47
,
1247
1275
(
1983
).
12.
Z.
Duan
,
N.
Møller
, and
J. H.
Weare
, “
An equation of state for the CH4–CO2–H2O system: I. Pure systems from 0 to 1000 °C and 0 to 8000 bar
,”
Geochim. Cosmochim. Acta
56
,
2605
2617
(
1992
).
13.
Z.
Duan
,
N.
Møller
, and
J. H.
Weare
, “
An equation of state for the CH4–CO2–H2O system: II. Mixtures from 50 to 1000 °C and 0 to 1000 bar
,”
Geochim. Cosmochim. Acta
56
,
2619
2631
(
1992
).
14.
K. S.
Pitzer
and
S. M.
Sterner
, “
Equations of state valid continuously from zero to extreme pressures for H2O and CO2
,”
J. Chem. Phys.
101
,
3111
3116
(
1994
).
15.
Z.
Duan
,
N.
Møller
, and
J. H.
Weare
, “
A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties
,”
Geochim. Cosmochim. Acta
60
,
1209
1216
(
1996
).
16.
R. J.
Bakker
, “
Adaptation of the Bowers and Helgeson (1983) equation of state to the H2O–CO2–CH4–N2–NaCl system
,”
Chem. Geol.
154
,
225
236
(
1999
).
17.
Z.
Duan
and
R.
Sun
, “
An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar
,”
Chem. Geol.
193
,
257
271
(
2003
).
18.
Z.
Tian
,
S.
Dai
, and
D.-e.
Jiang
, “
What can molecular simulation do for global warming?
,”
Adv. Rev.
6
,
173
197
(
2016
).
19.
J. G.
Harris
and
K. H.
Yung
, “
Carbon dioxide’s liquid–vapor coexistence curve and critical properties as predicted by a simple molecular model
,”
J. Phys. Chem.
99
,
12021
12024
(
1995
).
20.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
21.
J. J.
Potoff
,
J. R.
Errington
, and
A. Z.
Panagiotopoulos
, “
Molecular simulation of phase equilibria for mixtures of polar and non-polar components
,”
Mol. Phys.
97
,
1073
1083
(
1999
).
22.
R.
Bukowski
,
J.
Sadlej
,
B.
Jeziorski
,
P.
Jankowski
,
K.
Szalewicz
,
S. A.
Kucharski
,
H. L.
Williams
, and
B. M.
Rice
, “
Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory
,”
J. Chem. Phys.
110
,
3785
(
1999
).
23.
S.
Bock
,
E.
Bich
, and
E.
Vogel
, “
A new intermolecular potential energy surface for carbon dioxide from ab initio calculations
,”
Chem. Phys.
257
,
147
156
(
2000
).
24.
R. A. X.
Persson
, “
Gaussian charge polarizable interaction potential for carbon dioxide
,”
J. Chem. Phys.
134
,
034312
(
2011
).
25.
H.
Jiang
,
O. A.
Moultos
,
I. G.
Economou
, and
A. Z.
Panagiotopoulos
, “
Gaussian-charge polarizable and nonpolarizable models for CO2
,”
J. Phys. Chem. B
120
,
984
994
(
2016
).
26.
K.
Yu
,
J. G.
McDaniel
, and
J. R.
Schmidt
, “
Physically motivated, robust, ab initio force fields for CO2 and N2
,”
J. Phys. Chem. B
115
,
10054
10063
(
2011
).
27.
K.
Yu
and
J. R.
Schmidt
, “
Many-body effects are essential in a physically motivated CO2 force field
,”
J. Chem. Phys.
136
,
034503
(
2012
).
28.
Q.
Wang
and
J. M.
Bowman
, “
Two-component, ab initio potential energy surface for CO2–H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both
,”
J. Chem. Phys.
147
,
161714
(
2017
).
29.
O.
Sode
and
J. N.
Cherry
, “
Development of a flexible-monomer two-body carbon dioxide potential and its application to clusters up to (CO2)13
,”
J. Comput. Chem.
38
,
2763
2774
(
2017
).
30.
M.
Riera
,
E. P.
Yeh
, and
F.
Paesani
, “
Data-driven many-body models for molecular fluids: CO2/H2O mixtures as a case study
,”
J. Chem. Theory Comput.
16
,
2246
2257
(
2020
).
31.
H.
Jiang
,
I. G.
Economou
, and
A. Z.
Panagiotopoulos
, “
Molecular modeling of thermodynamic and transport properties for CO2 and aqueous brines
,”
Acc. Chem. Res.
50
,
751
758
(
2017
).
32.
G. A.
Orozco
,
I. G.
Economou
, and
A. Z.
Panagiotopoulos
, “
Optimization of intermolecular potential parameters for the CO2/H2O mixture
,”
J. Phys. Chem. B
118
,
11504
11511
(
2014
).
33.
C.
Bratschi
,
H.
Huber
, and
D. J.
Searles
, “
Non-Hamiltonian molecular dynamics implementation of the Gibbs ensemble method. II. Molecular liquid-vapor results for carbon dioxide
,”
J. Chem. Phys.
126
,
164105
(
2007
).
34.
Y.
Yuan
,
Z.
Ma
, and
F.
Wang
, “
Leveraging local MP2 to reduce basis set superposition errors: An efficient first-principles based force-field for carbon dioxide
,”
J. Chem. Phys.
151
,
184501
(
2019
).
35.
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. I. Halide–water dimer potential energy surfaces
,”
J. Chem. Theory Comput.
12
,
2698
2705
(
2016
).
36.
M.
Riera
,
N.
Mardirossian
,
P.
Bajaj
,
A. W.
Götz
, and
F.
Paesani
, “
Toward chemical accuracy in the description of ion–water interactions through many-body representations. Alkali-water dimer potential energy surfaces
,”
J. Chem. Phys.
147
,
161715
(
2017
).
37.
D.
Hankins
,
J. W.
Moskowitz
, and
F. H.
Stillinger
, “
Water molecule interactions
,”
J. Chem. Phys.
53
,
4544
4554
(
1970
).
38.
R.
Bukowski
,
K.
Szalewicz
,
G. C.
Groenenboom
, and
A.
Van der Avoird
, “
Predictions of the properties of water from first principles
,”
Science
315
,
1249
1252
(
2007
).
39.
Y.
Wang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Full-dimensional, ab initio potential energy and dipole moment surfaces for water
,”
J. Chem. Phys.
131
,
054511
(
2009
).
40.
Y.
Wang
,
X.
Huang
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
, “
Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer
,”
J. Chem. Phys.
134
,
094509
(
2011
).
41.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
42.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
1607
(
2014
).
43.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a ‘first-principles’ water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
44.
R.
Conte
,
C.
Qu
, and
J. M.
Bowman
, “
Permutationally invariant fitting of many-body, non-covalent interactions with application to three-body methane–water–water
,”
J. Chem. Theory Comput.
11
,
1631
1638
(
2015
).
45.
M.
Riera
,
A.
Hirales
,
R.
Ghosh
, and
F.
Paesani
, “
Data-driven many-body models with chemical accuracy for CH4/H2O mixtures
,”
J. Chem. Phys. B
124
,
11207
11221
(
2020
).
46.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
, “
On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice
,”
J. Chem. Phys.
145
,
194504
(
2016
).
47.
D.
Zhuang
,
M.
Riera
,
G. K.
Schenter
,
J. L.
Fulton
, and
F.
Paesani
, “
Many-body effects determine the local hydration structure of Cs+ in solution
,”
J. Phys. Chem. Lett.
10
,
406
412
(
2019
).
48.
P.
Bajaj
,
J. O.
Richardson
, and
F.
Paesani
, “
Ion-mediated hydrogen-bond rearrangement through tunnelling in the iodide–dihydrate complex
,”
Nat. Chem.
11
,
367
(
2019
).
49.
M. C.
Muniz
,
T. E.
Gartner
 III
,
M.
Riera
,
C.
Knight
,
S.
Yue
,
F.
Paesani
, and
A. Z.
Panagiotopoulos
, “
Vapor–liquid equilibrium of water with the MB-pol many-body potential
,”
J. Chem. Phys.
154
,
211103
(
2021
).
50.
A.
Caruso
and
F.
Paesani
, “
Data-driven many-body models enable a quantitative description of chloride hydration from clusters to bulk
,”
J. Chem. Phys.
155
,
064502
(
2021
).
51.
C. J.
Burnham
,
D. J.
Anick
,
P. K.
Mankoo
, and
G. F.
Reiter
, “
The vibrational proton potential in bulk liquid water and ice
,”
J. Chem. Phys.
128
,
154519
(
2008
).
52.
B. J.
Braams
and
J. M.
Bowman
, “
Permutationally invariant potential energy surfaces in high dimensionality
,”
Int. Rev. Phys. Chem.
28
,
577
606
(
2009
).
53.
A. V.
Marenich
,
S. V.
Jerome
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Charge model 5: An extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases
,”
J. Chem. Theory Comput.
8
,
527
541
(
2012
).
54.
F.
Paesani
, “
Water: Many-body potential from first principles (from the gas to the liquid phase)
,” in
Handbook of Materials Modeling:
edited by
W.
Andreoni
and
S.
Yip
(
Springer
,
2020
), pp.
635
660
.
55.
B. B.
Bizzarro
,
C. K.
Egan
, and
F.
Paesani
, “
Nature of halide–water interactions: Insights from many-body representations and density functional theory
,”
J. Chem. Theory Comput.
15
,
2983
2995
(
2019
).
56.
C. K.
Egan
,
B. B.
Bizzarro
,
M.
Riera
, and
F.
Paesani
, “
Nature of alkali ion–water interactions: Insights from many-body representations and density functional theory. II
,”
J. Chem. Theory Comput.
16
,
3055
3072
(
2020
).
57.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD(T)-F12 approximation
,”
J. Chem. Phys.
127
,
221106
(
2007
).
58.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
, “
Simplified CCSD(T)-F12 methods: Theory and benchmarks
,”
J. Chem. Phys.
130
,
054104
(
2009
).
59.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
, “
Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets
,”
J. Chem. Phys.
131
,
194105
(
2009
).
60.
U.
Góra
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
, “
Interaction energies of large clusters from many-body expansion
,”
J. Chem. Phys.
135
,
224102
(
2011
).
61.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
62.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
63.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
1371
(
1993
).
64.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
,”
J. Chem. Phys.
100
,
2975
2988
(
1994
).
65.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
,
4572
4585
(
1995
).
66.
C. M.
Breneman
and
K. B.
Wiberg
, “
Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
,”
J. Comput. Chem.
11
,
361
373
(
1990
).
67.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
 et al., “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
68.
N.
Mardirossian
and
M.
Head-Gordon
, “
ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
,”
J. Chem. Phys.
144
,
214110
(
2016
).
69.
A. D.
Becke
and
E. R.
Johnson
, “
Exchange-hole dipole moment and the dispersion interaction
,”
J. Chem. Phys.
122
,
154104
(
2005
).
70.
E. R.
Johnson
and
A. D.
Becke
, “
A post-Hartree–Fock model of intermolecular interactions
,”
J. Chem. Phys.
123
,
024101
(
2005
).
71.
E. R.
Johnson
and
A. D.
Becke
, “
A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections
,”
J. Chem. Phys.
124
,
174104
(
2006
).
72.
F.
Datchi
,
G.
Weck
,
A.
Saitta
,
Z.
Raza
,
G.
Garbarino
,
S.
Ninet
,
D.
Spaulding
,
J.
Queyroux
, and
M.
Mezouar
, “
Structure of liquid carbon dioxide at pressures up to 10 GPa
,”
Phys. Rev. B
94
,
014201
(
2016
).
73.
E. F.
Bull-Vulpe
,
M.
Riera
,
A. W.
Götz
, and
F.
Paesani
, “
MB-Fit: Software infrastructure for data-driven many-body potential energy functions
,”
J. Chem. Phys.
155
,
124801
(
2021
).
74.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
75.
MBX: A many-body energy and force calculator
,” http://paesanigroup.ucsd.edu/software/mbx.html.
76.
H.
Kamberaj
,
R. J.
Low
, and
M. P.
Neal
, “
Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules
,”
J. Chem. Phys.
122
,
224114
(
2005
).
77.
E. A.
Muller
,
Å.
Ervik
, and
A.
Mejía
, “
A guide to computing interfacial properties of fluids from molecular simulations [Article v1.0]
,”
LiveCoMS
2
,
21385
(
2021
).
78.
J.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Dover Publications
,
Mineola, NY
,
2002
).
79.
J. C.
Holste
,
K. R.
Hall
,
P. T.
Eubank
,
G.
Esper
,
M. Q.
Watson
,
W.
Warowny
,
D. M.
Bailey
,
J. G.
Young
, and
M. T.
Bellomy
, “
Experimental (p, Vm, T) for pure CO2 between 220 and 450 K
,”
J. Chem. Thermodyn.
19
,
1233
1250
(
1987
).
80.
M. R.
Patel
,
L. L.
Joffrion
, and
P. T.
Eubank
, “
A simple procedure for estimating virial coefficients from Burnett PVT data
,”
AIChE J.
34
,
1229
1232
(
1988
).
81.
W.
Duschek
,
R.
Kleinrahm
, and
W.
Wagner
, “
Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide I. The homogeneous gas and liquid regions in the temperature range from 217 K to 340 K at pressures up to 9 MPa
,”
J. Chem. Thermodyn.
22
,
827
840
(
1990
).
82.
P.
Linstrom
and
W.
Mallard
,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2018
).
83.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Toward a universal water model: First principles simulations from the dimer to the liquid phase
,”
J. Phys. Chem. Lett.
3
,
3765
3769
(
2012
).
84.
S.
Yue
,
M.
Riera
,
R.
Ghosh
,
A. Z.
Panagiotopoulos
, and
F.
Paesani
(
2022
). “
Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases
,” Princeton DataSpace repository. .

Supplementary Material

You do not currently have access to this content.