The CO2 molecule is of great interest for astrophysical studies since it can be found in a large variety of astrophysical media where it interacts with the dominant neutral species, such as He, H2, or H2O. The CO2–He collisional system was intensively studied over the last two decades. However, collisional data appear to be very sensitive to the potential energy surface (PES) quality. Thus, we provide, in this study, a new PES of the CO2–He van der Waals complex calculated with the coupled-cluster method and a complete basis set extrapolation in order to provide rotational rate coefficients that are as accurate as possible. The PES accuracy was tested through the calculations of bound state transition frequencies and pressure broadening coefficients that were compared to experimental data. An excellent agreement was globally found. Then, revised collisional data were provided for the 10–300 K temperature range. Rate coefficients were compared to previously computed ones and are found to be up to 50% greater than previously provided ones. These differences can induce non-negligible consequences for the modeling of CO2 abundance in astrophysical media.

1.
L.
D’Hendecourt
and
M.
Jourdain de Muizon
,
Astron. Astrophys.
223
,
L5
(
1989
).
2.
A. D.
Bosman
,
S.
Bruderer
, and
E. F.
van Dishoeck
,
Astron. Astrophys.
601
,
A36
(
2017
).
3.
D.
Despois
,
N.
Biver
,
D.
Bockelée-Morvan
, and
J.
Crovisier
,
Proc. Int. Astron. Union
1
,
469
(
2006
).
4.
E. F.
van Dishoeck
,
Annu. Rev. Astron. Astrophys.
42
,
119
(
2004
).
5.
E.
Roueff
and
F.
Lique
,
Chem. Rev.
113
,
8906
(
2013
).
6.
J.
Cernicharo
,
J. R.
Goicoechea
, and
E.
Caux
,
Astrophys. J.
534
,
L199
(
2000
).
7.
B.
Yang
and
P. C.
Stancil
,
J. Chem. Phys.
130
,
134319
(
2009
).
8.
H.
Ran
and
D.
Xie
,
J. Chem. Phys.
128
,
124323
(
2008
).
9.
R.
Matveeva
,
M.
Falck Erichsen
,
H.
Koch
, and
I. M.
Høyvik
,
J. Comput. Chem.
43
,
121
(
2021
).
10.
F.
Thibault
,
B.
Calil
,
J.
Boissoles
, and
J. M.
Launay
,
Phys. Chem. Chem. Phys.
2
,
5404
(
2000
).
11.
W.
Deng
,
D.
Mondelain
,
F.
Thibault
,
C.
Camy-Peyret
, and
A. W.
Mantz
,
J. Mol. Spectrosc.
256
,
102
(
2009
).
12.

As it can be seen in Sec. II, all recent CO2–He PES were computed with mid-bond functions so we wanted to provide the first highly accurate PES without them.

13.
W. H.
al-Qady
,
R. C.
Forrey
,
B. H.
Yang
,
P. C.
Stancil
, and
N.
Balakrishnan
,
Phys. Rev. A
84
,
054701
(
2011
).
14.
V. K.
Nikulin
and
Yu. N.
Tsarev
,
Chem. Phys.
10
,
433
(
1975
).
15.
R. G.
Gordon
and
Y. S.
Kim
,
J. Chem. Phys.
56
,
3122
(
1972
).
16.
Y. S.
Kim
and
R. G.
Gordon
,
J. Chem. Phys.
60
,
1842
(
1974
).
17.
G. A.
Parker
,
R. L.
Snow
, and
R. T.
Pack
,
J. Chem. Phys.
64
,
1668
(
1976
).
18.
G. A.
Parker
and
R. T.
Pack
,
J. Chem. Phys.
68
,
1585
(
1978
).
19.
M.
Keil
,
G. A.
Parker
, and
A.
Kuppermann
,
Chem. Phys. Lett.
59
,
443
(
1978
).
20.
C. L.
Stroud
and
L. M.
Raff
,
J. Chem. Phys.
72
,
5479
(
1980
).
22.
M.
Keil
and
G. A.
Parker
,
J. Chem. Phys.
82
,
1947
(
1985
).
23.
M.
Keil
,
L. J.
Rawluk
, and
T. W.
Dingle
,
J. Chem. Phys.
96
,
6621
(
1992
).
24.
L.
Beneventi
,
P.
Casavecchia
,
F.
Vecchiocattivi
,
G. G.
Volpi
,
U.
Buck
,
C.
Lauenstein
, and
R.
Schinke
,
J. Chem. Phys.
89
,
4671
(
1988
).
25.
M. J.
Weida
,
J. M.
Sperhac
,
D. J.
Nesbitt
, and
J. M.
Hutson
,
J. Chem. Phys.
101
,
8351
(
1994
).
26.
Y.
Xu
and
W.
Jäger
,
J. Mol. Struct.
599
,
211
(
2001
).
27.
A. R. W.
McKellar
,
J. Chem. Phys.
125
,
114310
(
2006
).
28.
G.
Yan
,
M.
Yang
, and
D.
Xie
,
J. Chem. Phys.
109
,
10284
(
1998
).
29.
F.
Negri
,
F.
Ancilotto
,
G.
Mistura
, and
F.
Toigo
,
J. Chem. Phys.
111
,
6439
(
1999
).
30.
T.
Korona
,
R.
Moszynski
,
F.
Thibault
,
J.-M.
Launay
,
B.
Bussery-Honvault
,
J.
Boissoles
, and
P. E. S.
Wormer
,
J. Chem. Phys.
115
,
3074
(
2001
).
31.
J.
Boissoles
,
F.
Thibault
,
R.
Le Doucen
,
V.
Menoux
, and
C.
Boulet
,
J. Chem. Phys.
101
,
6552
(
1994
).
32.
H.
Li
and
R. J.
Le Roy
,
Phys. Chem. Chem. Phys.
10
,
4128
(
2008
).
33.
T.
Selim
,
A.
Christianen
,
A.
van der Avoird
, and
G. C.
Groenenboom
,
J. Chem. Phys.
155
,
034105
(
2021
).
34.
G.
Guelachvili
,
J. Mol. Spectrosc.
79
,
72
(
1980
).
35.
G.
Chałasiński
,
J.
Rak
,
M. M.
Szczȩśniak
, and
S. M.
Cybulski
,
J. Chem. Phys.
106
,
3301
(
1997
).
36.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
,
J. Chem. Phys.
100
,
7410
(
1994
).
37.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
38.
H.-J.
Werner
, molpro, a package of ab initio programs, version 2010.1,
2010
.
39.
J.
Hutson
, BOUND computer code, version 5, distributed by Collaborative Computational Project No. 6 of the Science and Engineering Research Council,
1993
.
40.
D. E.
Manolopoulos
,
J. Chem. Phys.
85
,
6425
(
1986
).
41.
L. S.
Rothman
and
L. D. G.
Young
,
J. Quant. Spectrosc. Radiat. Transfer
25
,
505
(
1981
).
42.
G.
Graner
,
C.
Rossetti
, and
D.
Bailly
,
Mol. Phys.
58
,
627
(
1986
).
43.
T. L.
Wilson
,
Annu. Rev. Astron. Astrophys.
32
,
191
(
1994
).
44.
J.
Hutson
and
S.
Green
, Molscat computer program, version 14, distributed by Collaborative Computational Projet No. 6 of the UK Science and Engineering Research Council,
1994
.
45.
A. M.
Arthurs
and
A.
Dalgarno
,
Proc. R. Soc. London, Ser. A
256
,
540
(
1960
).
46.
M.
Costes
and
C.
Naulin
,
Chem. Sci.
7
,
2462
(
2016
).
47.
J. A.
Miller
,
R. J.
Kee
, and
C. K.
Westbrook
,
Annu. Rev. Phys. Chem.
41
,
345
(
1990
).

Supplementary Material

You do not currently have access to this content.