The optical properties of small spheroidal metallic nanoparticles can be simply studied within the quasistatic/electrostatic approximation, but this is limited to particles much smaller than the wavelength. A number of approaches have been proposed to extend the range of validity of this simple approximation to a range of sizes more relevant to applications in plasmonics, where resonances play a key role. The most common approach, called the modified long-wavelength approximation, is based on physical considerations of the dynamic depolarization field inside the spheroid, but alternative empirical expressions have also been proposed, presenting better accuracy. Recently, an exact Taylor expansion of the full electromagnetic solution has been derived [Majic et al., Phys. Rev. A 99, 013853 (2019)], which should arguably provide the best approximation for a given order. We here compare the merits of these approximations to predict orientation-averaged extinction/scattering/absorption spectra of metallic spheroidal nanoparticles. The Taylor expansion is shown to provide more accurate predictions over a wider range of parameters (aspect ratio and prolate/oblate shape). It also allows us to consider quadrupole and octupole resonances. This simple approximation can therefore be used for small and intermediate-size nanoparticles in situations where computing the full electromagnetic solution is not practical.

1.
K. A.
Willets
and
R. P.
Van Duyne
, “
Localized surface plasmon resonance spectroscopy and sensing
,”
Annu. Rev. Phys. Chem.
58
(
1
),
267
297
(
2007
).
2.
E. C.
Le Ru
and
P. G.
Etchegoin
,
Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects
(
Elsevier
,
Amsterdam
,
2009
).
3.
J.
Langer
 et al, “
Present and future of surface-enhanced Raman scattering
,”
ACS Nano
14
,
28
117
(
2020
).
4.
X. X.
Han
,
R. S.
Rodriguez
,
C. L.
Haynes
,
Y.
Ozaki
, and
B.
Zhao
, “
Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage
,”
Nat. Rev. Methods Primers
1
(
1
),
87
(
2022
).
5.
G.
Zengin
,
T.
Gschneidtner
,
R.
Verre
,
L.
Shao
,
T. J.
Antosiewicz
,
K.
Moth-Poulsen
,
M.
Käll
, and
T.
Shegai
, “
Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy
,”
J. Phys. Chem. C
120
(
37
),
20588
20596
(
2016
).
6.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
, “
Single-molecule strong coupling at room temperature in plasmonic nanocavities
,”
Nature
535
(
7610
),
127
(
2016
).
7.
B. L.
Darby
,
B.
Auguié
,
M.
Meyer
,
A. E.
Pantoja
, and
E. C.
Le Ru
, “
Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage
,”
Nat. Photonics
10
(
1
),
40
(
2016
).
8.
T. E.
Tesema
,
H.
Kookhaee
, and
T. G.
Habteyes
, “
Extracting electronic transition bands of adsorbates from molecule–plasmon excitation coupling
,”
J. Phys. Chem. Lett.
11
(
9
),
3507
3514
(
2020
).
9.
A.
Politano
,
A.
Cupolillo
,
G.
Di Profio
,
H. A.
Arafat
,
G.
Chiarello
, and
E.
Curcio
, “
When plasmonics meets membrane technology
,”
J. Phys.: Condens. Matter
28
(
36
),
363003
(
2016
).
10.
C.
Clavero
, “
Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices
,”
Nat. Photonics
8
(
2
),
95
103
(
2014
).
11.
B.
Gallinet
,
J.
Butet
,
O. J. F.
Martin
, “
Numerical methods for nanophotonics: Standard problems and future challenges
,”
Laser Photonics Rev.
9
(
6
),
577
603
(
2015
).
12.
M.
Yurkin
, “
Computational approaches for plasmonics
,” in
Handbook of Molecular Plasmonics
, edited by
S.
D’Agostino
(
Pan Stanford Publishing
,
2013
), pp.
83
135
.
13.
A. M.
Kern
and
O. J. F.
Martin
, “
Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures
,”
J. Opt. Soc. Am. A
26
(
4
),
732
740
(
2009
).
14.
T. V.
Raziman
,
W. R. C.
Somerville
,
O. J. F.
Martin
, and
E. C.
Le Ru
, “
Accuracy of surface integral equation matrix elements in plasmonic calculations
,”
J. Opt. Soc. Am. B
32
(
3
),
485
492
(
2015
).
15.
J.
Grand
and
E. C.
Le Ru
, “
Practical implementation of accurate finite-element calculations for electromagnetic scattering by nanoparticles
,”
Plasmonics
15
(
1
),
109
121
(
2020
).
16.
M. I.
Mishchenko
,
L. D.
Travis
, and
A. A.
Lacis
,
Scattering, Absorption, and Emission of Light by Small Particles
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
2002
).
17.
W. R. C.
Somerville
,
B.
Auguié
, and
E. C.
Le Ru
, “
Accurate and convergent T-matrix calculations of light scattering by spheroids
,”
J. Quant. Spectrosc. Radiat. Transfer
160
,
29
35
(
2015
).
18.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
1983
).
19.
M.
Meier
and
A.
Wokaun
, “
Enhanced fields on large metal particles: Dynamic depolarization
,”
Opt. Lett.
8
(
11
),
581
583
(
1983
).
20.
K. L.
Kelly
,
E.
Coronado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
,
668
677
(
2003
).
21.
A.
Moroz
, “
Depolarization field of spheroidal particles
,”
J.Opt. Soc. Am. B
26
(
3
),
517
527
(
2009
).
22.
H.
Kuwata
,
H.
Tamaru
,
K.
Esumi
, and
K.
Miyano
, “
Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation
,”
Appl. Phys. Lett.
83
(
22
),
4625
4627
(
2003
).
23.
D.
Schebarchov
,
B.
Auguié
, and
E. C.
Le Ru
, “
Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells
,”
Phys. Chem. Chem. Phys.
15
(
12
),
4233
4242
(
2013
).
24.
M.
Majic
,
L.
Pratley
,
D.
Schebarchov
,
W. R.
Somerville
,
B.
Auguié
, and
E. C.
Le Ru
, “
Approximate T-matrix and optical properties of spheroidal particles to third order with respect to size parameter
,”
Phys. Rev. A
99
(
1
),
013853
(
2019
).
25.
M.
Januar
,
B.
Liu
,
J.-C.
Cheng
,
K.
Hatanaka
,
H.
Misawa
,
H.-H.
Hsiao
, and
K.-C.
Liu
, “
Role of depolarization factors in the evolution of a dipolar plasmonic spectral line in the far-and near-field regimes
,”
J. Phys. Chem. C
124
(
5
),
3250
3259
(
2020
).
26.
I. L.
Rasskazov
,
V. I.
Zakomirnyi
,
A. D.
Utyushev
,
P. S.
Carney
, and
A.
Moroz
, “
Remarkable predictive power of the modified long wavelength approximation
,”
J. Phys. Chem. C
125
(
3
),
1963
1971
(
2021
).
27.
A. F.
Stevenson
, “
Electromagnetic scattering by an ellipsoid in the third approximation
,”
J. Appl. Phys.
24
(
9
),
1143
1151
(
1953
).
28.
R.
Yu
,
L. M.
Liz-Marzán
, and
F. J.
García de Abajo
, “
Universal analytical modeling of plasmonic nanoparticles
,”
Chem. Soc. Rev.
46
,
6710
6724
(
2017
).
29.
H. Y.
Chung
,
P. T.
Leung
, and
D. P.
Tsai
, “
Dynamic modifications of polarizability for large metallic spheroidal nanoshells
,”
J. Chem. Phys.
131
(
12
),
124122
(
2009
).
30.
V.
Grigoriev
,
N.
Bonod
,
J.
Wenger
, and
B.
Stout
, “
Optimizing nanoparticle designs for ideal absorption of light
,”
ACS Photonics
2
(
2
),
263
270
(
2015
).
31.
Y.
Wu
,
Z.
Hu
,
X.-T.
Kong
,
J. C.
Idrobo
,
A. G.
Nixon
,
P. D.
Rack
,
D. J.
Masiello
, and
J. P.
Camden
, “
Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires
,”
Phys. Rev. B
101
(
8
),
085409
(
2020
).
32.
A. L.
Schmucker
,
N.
Harris
,
M. J.
Banholzer
,
M. G.
Blaber
,
K. D.
Osberg
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
Correlating nanorod structure with experimentally measured and theoretically predicted surface plasmon resonance
,”
ACS Nano
4
(
9
),
5453
5463
(
2010
).
33.
I.
Zoric
,
M.
Zach
,
B.
Kasemo
, and
C.
Langhammer
, “
Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms
,”
ACS Nano
5
(
4
),
2535
2546
(
2011
).
34.
N. G.
Khlebtsov
and
E. C.
Le Ru
, “
Analytical solutions for the surface- and orientation-averaged SERS enhancement factor of small plasmonic particles
,”
J. Raman Spectrosc.
52
,
285
295
(
2021
).
35.
N. G.
Khlebtsov
, “
Extinction and scattering of light by nonspherical plasmonic particles in absorbing media
,”
J. Quant. Spectrosc. Radiat. Transfer
280
,
108069
(
2022
).
36.
P.
Barber
and
C.
Yeh
, “
Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies
,”
Appl. Opt.
14
(
12
),
2864
2872
(
1975
).
37.
W. R. C.
Somerville
,
B.
Auguié
, and
E. C.
Le Ru
, “
Severe loss of precision in calculations of T-matrix integrals
,”
J. Quant. Spectrosc. Radiat. Transfer
113
(
7
),
524
535
(
2012
).
38.
E. C.
Le Ru
,
W. R. C.
Somerville
, and
B.
Auguié
, “
Radiative correction in approximate treatments of electromagnetic scattering by point and body scatterers
,”
Phys. Rev. A
87
(
1
),
012504
(
2013
).
39.
E. J.
Zeman
and
G. C.
Schatz
, “
An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium
,”
J. Phys. Chem.
91
(
3
),
634
643
(
1987
).
40.
A. E.
Moskalensky
and
M. A.
Yurkin
, “
Energy budget and optical theorem for scattering of source-induced fields
,”
Phys. Rev. A
99
(
5
),
053824
(
2019
).
41.
A. E.
Moskalensky
and
M. A.
Yurkin
, “
A point electric dipole: From basic optical properties to the fluctuation–dissipation theorem
,”
Rev. Phys.
6
,
100047
(
2021
).
42.
W. R. C.
Somerville
,
B.
Auguié
, and
E. C.
Le Ru
, “
SMARTIES: User-friendly codes for fast and accurate calculations of light scattering by spheroids
,”
J. Quant. Spectrosc. Radiat. Transfer
174
,
39
55
(
2016
).
43.
H. U.
Yang
,
J.
D’Archangel
,
M. L.
Sundheimer
,
E.
Tucker
,
G. D.
Boreman
, and
M. B.
Raschke
, “
Optical dielectric function of silver
,”
Phys. Rev. B
91
,
235137
(
2015
).
44.
U.
Kreibig
and
M.
Vollmer
, “
Optical properties of metal clusters
,” in
Material Science
(
Springer
,
1995
).
45.
J. C. E.
Sten
, “
Multiline singularities applied to low-frequency scattering by a prolate spheroid
,”
Compel
16
(
2
),
92
107
(
1997
).
46.
R. C.
Voicu
and
T.
Sandu
, “
Analytical results regarding electrostatic resonances of surface phonon/plasmon polaritons: Separation of variables with a twist
,”
Proc. R. Soc. A
473
(
2199
),
20160796
(
2017
).
47.
M.
Majic
,
F.
Gray
,
B.
Auguié
, and
E. C.
Le Ru
, “
Electrostatic limit of the T-matrix for electromagnetic scattering: Exact results for spheroidal particles
,”
J. Quant. Spectrosc. Radiat. Transfer
200
,
50
58
(
2017
).
48.
M.
Majic
and
E. C.
Le Ru
, “
Quasistatic limit of the electric-magnetic coupling blocks of the T-matrix for spheroids
,”
J. Quant. Spectrosc. Radiat. Transfer
225
,
16
24
(
2019
).
49.
R. L.
Olmon
,
B.
Slovick
,
T. W.
Johnson
,
D.
Shelton
,
S.-H.
Oh
,
G. D.
Boreman
, and
M. B.
Raschke
, “
Optical dielectric function of gold
,”
Phys. Rev. B
86
,
235147
(
2012
).

Supplementary Material

You do not currently have access to this content.