Boosted by the relentless increase in available computational resources, high-throughput calculations based on first-principles methods have become a powerful tool to screen a huge range of materials. The backbone of these studies is well-structured and reproducible workflows efficiently returning the desired properties given chemical compositions and atomic arrangements as sole input. Herein, we present a new workflow designed to compute the stability and the electronic properties of crystalline materials from density-functional theory using the strongly constrained and appropriately normed approximation (SCAN) for the exchange–correlation potential. We show the performance of the developed tool exploring the binary Cs–Te phase space that hosts cesium telluride, a semiconducting material widely used as a photocathode in particle accelerators. Starting from a pool of structures retrieved from open computational material databases, we analyze formation energies as a function of the relative Cs content and for a few selected crystals, we investigate the band structures and density of states unraveling interconnections among the structure, stoichiometry, stability, and electronic properties. Our study contributes to the ongoing research on alkali-based photocathodes and demonstrates that high-throughput calculations based on state-of-the-art first-principles methods can complement experiments in the search for optimal materials for next-generation electron sources.

1.
D. H.
Dowell
,
I.
Bazarov
,
B.
Dunham
,
K.
Harkay
,
C.
Hernandez-Garcia
,
R.
Legg
,
H.
Padmore
,
T.
Rao
,
J.
Smedley
, and
W.
Wan
, “
Cathode R&D for future light sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
622
,
685
697
(
2010
).
2.
P.
Musumeci
,
J. T.
Moody
,
C. M.
Scoby
,
M. S.
Gutierrez
,
H. A.
Bender
, and
N. S.
Wilcox
, “
High quality single shot diffraction patterns using ultrashort megaelectron volt electron beams from a radio frequency photoinjector
,”
Rev. Sci. Instrum.
81
,
013306
(
2010
).
3.
P.
Musumeci
,
J. G.
Navarro
,
J.
Rosenzweig
,
L.
Cultrera
,
I.
Bazarov
,
J.
Maxson
,
S.
Karkare
, and
H.
Padmore
, “
Advances in bright electron sources
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
907
,
209
(
2018
).
4.
S.
Boucher
,
P.
Frigola
,
A.
Murokh
,
M.
Ruelas
,
I.
Jovanovic
,
J.
Rosenzweig
, and
G.
Travish
, “
Inverse compton scattering gamma ray source
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
608
,
S54
S56
(
2009
).
5.
Y.
Chen
,
I.
Zagorodnov
, and
M.
Dohlus
, “
Beam dynamics of realistic bunches at the injector section of the European X-ray Free-Electron Laser
,”
Phys. Rev. Accel. Beams
23
,
044201
(
2020
).
6.
M. L.
McConnell
, “
Scintillation detectors for x-ray and γ-ray astronomy
,” in
The WSPC Handbook of Astronomical Instrumentation: Volume 5: Gamma-Ray and Multimessenger Astronomical Instrumentation
(
World Scientific
,
2021
), pp.
27
50
.
7.
C.
Cocchi
and
H.-D.
Saßnick
, “
Ab initio quantum–mechanical predictions of semiconducting photocathode materials
,”
Micromachines
12
,
1002
(
2021
).
8.
E. R.
Antoniuk
,
P.
Schindler
,
W. A.
Schroeder
,
B.
Dunham
,
P.
Pianetta
,
T.
Vecchione
, and
E. J.
Reed
, “
Novel ultrabright and air-stable photocathodes discovered from machine learning and density functional theory driven screening
,”
Adv. Mater.
33
,
2104081
(
2021
).
9.
S. G.
Louie
,
Y.-H.
Chan
,
F. H.
da Jornada
,
Z.
Li
, and
D. Y.
Qiu
, “
Discovering and understanding materials through computation
,”
Nat. Mater.
20
,
728
735
(
2021
).
10.
N.
Marzari
,
A.
Ferretti
, and
C.
Wolverton
, “
Electronic-structure methods for materials design
,”
Nat. Mater.
20
,
736
749
(
2021
).
11.
S.
Curtarolo
,
W.
Setyawan
,
G. L. W.
Hart
,
M.
Jahnatek
,
R. V.
Chepulskii
,
R. H.
Taylor
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
O.
Levy
,
M. J.
Mehl
,
H. T.
Stokes
,
D. O.
Demchenko
, and
D.
Morgan
, “
AFLOW: An automatic framework for high-throughput materials discovery
,”
Comput. Mater. Sci.
58
,
218
226
(
2012
).
12.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
13.
J. E.
Saal
,
S.
Kirklin
,
M.
Aykol
,
B.
Meredig
, and
C.
Wolverton
, “
Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD)
,”
JOM
65
,
1501
1509
(
2013
).
14.
C.
Draxl
and
M.
Scheffler
, “
The NOMAD laboratory: From data sharing to artificial intelligence
,”
J. Phys.: Mater.
2
,
036001
(
2019
).
15.
L.
Talirz
,
S.
Kumbhar
,
E.
Passaro
,
A. V.
Yakutovich
,
V.
Granata
,
F.
Gargiulo
,
M.
Borelli
,
M.
Uhrin
,
S. P.
Huber
,
S.
Zoupanos
,
C. S.
Adorf
,
C. W.
Andersen
,
O.
Schütt
,
C. A.
Pignedoli
,
D.
Passerone
,
J.
VandeVondele
,
T. C.
Schulthess
,
B.
Smit
,
G.
Pizzi
, and
N.
Marzari
, “
Materials cloud, a platform for open computational science
,”
Sci. Data
7
,
299
(
2020
).
16.
E.
Gossett
,
C.
Toher
,
C.
Oses
,
O.
Isayev
,
F.
Legrain
,
F.
Rose
,
E.
Zurek
,
J.
Carrete
,
N.
Mingo
,
A.
Tropsha
, and
S.
Curtarolo
, “
AFLOW-ML: A restful API for machine-learning predictions of materials properties
,”
Comput. Mater. Sci.
152
,
134
145
(
2018
).
17.
G.
Pizzi
,
A.
Togo
, and
B.
Kozinsky
, “
Provenance, workflows, and crystallographic tools in materials science: AiiDA, spglib, and seekpath
,”
MRS Bull.
43
,
696
702
(
2018
).
18.
A. V.
Yakutovich
,
K.
Eimre
,
O.
Schütt
,
L.
Talirz
,
C. S.
Adorf
,
C. W.
Andersen
,
E.
Ditler
,
D.
Du
,
D.
Passerone
,
B.
Smit
,
N.
Marzari
,
G.
Pizzi
, and
C. A.
Pignedoli
, “
AiiDAlab—An ecosystem for developing, executing, and sharing scientific workflows
,”
Comput. Mater. Sci.
188
,
110165
(
2021
).
19.
G. R.
Schleder
,
A. C. M.
Padilha
,
C. M.
Acosta
,
M.
Costa
, and
A.
Fazzio
, “
From DFT to machine learning: Recent approaches to materials science—A review
,”
J. Phys.: Mater.
2
,
032001
(
2019
).
20.
S.
Chibani
and
F.-X.
Coudert
, “
Machine learning approaches for the prediction of materials properties
,”
APL Mater.
8
,
080701
(
2020
).
21.
Y.
Cheng
,
L.
Zhu
,
G.
Wang
,
J.
Zhou
,
S. R.
Elliott
, and
Z.
Sun
, “
Vacancy formation energy and its connection with bonding environment in solid: A high-throughput calculation and machine learning study
,”
Comput. Mater. Sci.
183
,
109803
(
2020
).
22.
B.
Sahni
,
Vikram
,
J.
Kangsabanik
, and
A.
Alam
, “
Reliable prediction of new quantum materials for topological and renewable-energy applications: A high-throughput screening
,”
J. Phys. Chem. Lett.
11
,
6364
6372
(
2020
).
23.
N.
Ran
,
B.
Sun
,
W.
Qiu
,
E.
Song
,
T.
Chen
, and
J.
Liu
, “
Identifying metallic transition-metal dichalcogenides for hydrogen evolution through multilevel high-throughput calculations and machine learning
,”
J. Phys. Chem. Lett.
12
,
2102
2111
(
2021
).
24.
D.
Dahliah
,
G.
Brunin
,
J.
George
,
V.-A.
Ha
,
G.-M.
Rignanese
, and
G.
Hautier
, “
High-throughput computational search for high carrier lifetime, defect-tolerant solar absorbers
,”
Energy Environ. Sci.
14
,
5057
5073
(
2021
).
25.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body Green’s-function approaches
,”
Rev. Mod. Phys.
74
,
601
(
2002
).
26.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
27.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
28.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
29.
A. J.
Garza
and
G. E.
Scuseria
, “
Predicting band gaps with hybrid density functionals
,”
J. Phys. Chem. Lett.
7
,
4165
4170
(
2016
).
30.
P.
Borlido
,
T.
Aull
,
A. W.
Huran
,
F.
Tran
,
M. A. L.
Marques
, and
S.
Botti
, “
Large-scale benchmark of exchange–correlation functionals for the determination of electronic band gaps of solids
,”
J. Chem. Theory Comput.
15
,
5069
5079
(
2019
).
31.
K.
Burke
, “
Perspective on density functional theory
,”
J. Chem. Phys.
136
,
150901
(
2012
).
32.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
33.
S.
Jana
,
K.
Sharma
, and
P.
Samal
, “
Assessing the performance of the recent meta-GGA density functionals for describing the lattice constants, bulk moduli, and cohesive energies of alkali, alkaline-earth, and transition metals
,”
J. Chem. Phys.
149
,
164703
(
2018
).
34.
H.-D.
Saßnick
and
C.
Cocchi
, “
Electronic structure of cesium-based photocathode materials from density functional theory: Performance of PBE, SCAN, and HSE06 functionals
,”
Electron. Struct.
3
,
027001
(
2021
).
35.
A.
Pisch
,
A.
Pasturel
,
G.
Deffrennes
,
O.
Dezellus
,
P.
Benigni
, and
G.
Mikaelian
, “
Investigation of the thermodynamic properties of Al4C3: A combined DFT and DSC study
,”
Comput. Mater. Sci.
171
,
109100
(
2020
).
36.
Y.
Yao
and
Y.
Kanai
, “
Plane-wave pseudopotential implementation and performance of SCAN meta-GGA exchange-correlation functional for extended systems
,”
J. Chem. Phys.
146
,
224105
(
2017
).
37.
S. H.
Kong
,
J.
Kinross-Wright
,
D. C.
Nguyen
, and
R. L.
Sheffield
, “
Cesium telluride photocathodes
,”
J. Appl. Phys.
77
,
6031
6038
(
1995
).
38.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borštnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Müller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Glöß
,
M.
Lass
,
I.
Bethune
,
C. J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
39.
C. N.
Berglund
and
W. E.
Spicer
, “
Photoemission studies of copper and silver: Theory
,”
Phys. Rev.
136
,
A1030
(
1964
).
40.
S. P.
Huber
,
S.
Zoupanos
,
M.
Uhrin
,
L.
Talirz
,
L.
Kahle
,
R.
Häuselmann
,
D.
Gresch
,
T.
Müller
,
A. V.
Yakutovich
,
C. W.
Andersen
,
F. F.
Ramirez
,
C. S.
Adorf
,
F.
Gargiulo
,
S.
Kumbhar
,
E.
Passaro
,
C.
Johnston
,
A.
Merkys
,
A.
Cepellotti
,
N.
Mounet
,
N.
Marzari
,
B.
Kozinsky
, and
G.
Pizzi
, “
AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance
,”
Sci. Data
7
,
300
(
2020
).
41.
M.
Uhrin
,
S. P.
Huber
,
J.
Yu
,
N.
Marzari
, and
G.
Pizzi
, “
Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows
,”
Comput. Mater. Sci.
187
,
110086
(
2021
).
43.
G.
Pizzi
,
A.
Cepellotti
,
R.
Sabatini
,
N.
Marzari
, and
B.
Kozinsky
, “
AiiDA: Automated interactive infrastructure and database for computational science
,”
Comput. Mater. Sci.
111
,
218
230
(
2016
).
44.
Y.
Hinuma
,
G.
Pizzi
,
Y.
Kumagai
,
F.
Oba
, and
I.
Tanaka
, “
Band structure diagram paths based on crystallography
,”
Comput. Mater. Sci.
128
,
140
184
(
2017
).
45.
A.
Togo
and
I.
Tanaka
, “Spglib
: A software library for crystal symmetry search
,” arXiv:1808.01590 [cond-mat.mtrl-sci] (
2018
).
46.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
47.
K.
Baarman
and
J.
VandeVondele
, “
A comparison of accelerators for direct energy minimization in electronic structure calculations
,”
J. Chem. Phys.
134
,
244104
(
2011
).
48.
J.
VandeVondele
and
J.
Hutter
, “
An efficient orbital transformation method for electronic structure calculations
,”
J. Chem. Phys.
118
,
4365
4369
(
2003
).
49.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
50.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
1710
(
1996
).
52.
R. A.
Powell
,
W. E.
Spicer
,
G. B.
Fisher
, and
P.
Gregory
, “
Photoemission studies of cesium telluride
,”
Phys. Rev. B
8
,
3987
(
1973
).
53.
M.
Gaowei
,
J.
Sinsheimer
,
D.
Strom
,
J.
Xie
,
J.
Cen
,
J.
Walsh
,
E.
Muller
, and
J.
Smedley
, “
Codeposition of ultrasmooth and high quantum efficiency cesium telluride photocathodes
,”
Phys. Rev. Accel. Beams
22
,
073401
(
2019
).
54.
J. Z.
Terdik
,
K.
Németh
,
K. C.
Harkay
,
J. H.
Terry
, Jr.
,
L.
Spentzouris
,
D.
Velázquez
,
R.
Rosenberg
, and
G.
Srajer
, “
Anomalous work function anisotropy in ternary acetylides
,”
Phys. Rev. B
86
,
035142
(
2012
).
55.
L.
Kalarasse
,
B.
Bennecer
, and
F.
Kalarasse
, “
Optical properties of the alkali antimonide semiconductors Cs3Sb, Cs2KSb, CsK2Sb and K3Sb
,”
J. Phys. Chem. Solids
71
,
314
322
(
2010
).
56.
S. M.
Alay-e-Abbas
and
A.
Shaukat
, “
FP-LAPW calculations of structural, electronic, and optical properties of alkali metal tellurides: M2Te [M: Li, Na, K and Rb]
,”
J. Mater. Sci.
46
,
1027
1037
(
2011
).
57.
G.
Murtaza
,
M.
Ullah
,
N.
Ullah
,
M.
Rani
,
M.
Muzammil
,
R.
Khenata
,
S. M.
Ramay
, and
U.
Khan
, “
Structural, elastic, electronic and optical properties of bi-alkali antimonides
,”
Bull. Mater. Sci.
39
,
1581
1591
(
2016
).
58.
C.
Cocchi
,
S.
Mistry
,
M.
Schmeißer
,
J.
Kühn
, and
T.
Kamps
, “
First-principles many-body study of the electronic and optical properties of CsK2Sb, a semiconducting material for ultra-bright electron sources
,”
J. Phys.: Condens. Matter
31
,
014002
(
2018
).
59.
C.
Cocchi
,
S.
Mistry
,
M.
Schmeißer
,
R.
Amador
,
J.
Kühn
, and
T.
Kamps
, “
Electronic structure and core electron fingerprints of caesium-based multi-alkali antimonides for ultra-bright electron sources
,”
Sci. Rep.
9
,
18276
(
2019
).
60.
C.
Cocchi
, “
X-ray absorption fingerprints from Cs atoms in Cs3Sb
,”
Phys. Status Solidi
14
,
2000194
(
2020
).
61.
R.
Amador
,
H.-D.
Saßnick
, and
C.
Cocchi
, “
Electronic structure and optical properties of Na2KSb and NaK2Sb from first-principles many-body theory
,”
J. Phys.: Condens. Matter
33
,
365502
(
2021
).
62.
I.
Schewe-Miller
and
P.
Böttcher
, “
Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te
,”
Z. Kristallogr.
196
,
137
151
(
1991
).
63.
A. R.
Oganov
and
M.
Valle
, “
How to quantify energy landscapes of solids
,”
J. Chem. Phys.
130
,
104504
(
2009
).
64.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
65.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
66.
A.
Wang
,
R.
Kingsbury
,
M.
McDermott
,
M.
Horton
,
A.
Jain
,
S. P.
Ong
,
S.
Dwaraknath
, and
K. A.
Persson
, “
A framework for quantifying uncertainty in DFT energy corrections
,”
Sci. Rep.
11
,
15496
(
2021
).
67.
T.-N.
Pham Thi
,
J.-C.
Dumas
,
V.
Bouineau
,
N.
Dupin
,
C.
Guéneau
,
S.
Gossé
,
P.
Benigni
,
P.
Maugis
, and
J.
Rogez
, “
Thermodynamic assessment of the Cs–Te binary system
,”
Calphad
48
,
1
12
(
2015
).
68.
P.
Böttcher
and
U.
Kretschmann
, “
Darstellung und kristallstruktur von CsTe4
,”
Z. Anorg. Allg. Chem.
523
,
145
152
(
1985
).
69.
P.
Böttcher
and
U.
Kretschmann
, “
Darstellung und kristallstruktur von dicaesiumpentatellurid, Cs2Te5
,”
Z. Anorg. Allg. Chem.
491
,
39
46
(
1982
).
70.
P.
Böttcher
, “
Synthesis and crystal structure of Rb2Te3 and Cs2Te3
,”
J. Less Common Met.
70
,
263
271
(
1980
).
71.
R.
de Boer
and
E. H. P.
Cordfunke
, “
On the caesium-rich part of the Cs–Te phase diagram
,”
J. Alloys Compd.
228
,
75
78
(
1995
).
72.
R.
de Boer
and
E. H. P.
Cordfunke
, “
Thermodynamic properties of Cs5Te3
,”
J. Chem. Thermodyn.
29
,
603
608
(
1997
).
73.
J.
Sangster
and
A. D.
Pelton
, “
The Cs–Te (cesium-tellurium) system
,”
J. Phase Equilib.
14
,
246
249
(
1993
).
74.
A.
di Bona
,
F.
Sabary
,
S.
Valeri
,
P.
Michelato
,
D.
Sertore
, and
G.
Suberlucq
, “
Auger and x-ray photoemission spectroscopy study on Cs2Te photocathodes
,”
J. Appl. Phys.
80
,
3024
3030
(
1996
).
75.
Z.
Yusof
,
A.
Denchfield
,
M.
Warren
,
J.
Cardenas
,
N.
Samuelson
,
L.
Spentzouris
,
J.
Power
, and
J.
Zasadzinski
, “
Photocathode quantum efficiency of ultrathin Cs2Te layers on Nb substrates
,”
Phys. Rev. Accel. Beams
20
,
123401
(
2017
).
76.
C. M.
Pierce
,
J. K.
Bae
,
A.
Galdi
,
L.
Cultrera
,
I.
Bazarov
, and
J.
Maxson
, “
Beam brightness from Cs–Te near the photoemission threshold
,”
Appl. Phys. Lett.
118
,
124101
(
2021
).
77.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
78.
D.
Sertore
,
S.
Schreiber
,
K.
Floettmann
,
F.
Stephan
,
K.
Zapfe
, and
P.
Michelato
, “
First operation of cesium telluride photocathodes in the TTF injector RF gun
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
445
,
422
426
(
2000
).
79.
E.
Prat
,
S.
Bettoni
,
H.-H.
Braun
,
R.
Ganter
, and
T.
Schietinger
, “
Measurements of copper and cesium telluride cathodes in a radio-frequency photoinjector
,”
Phys. Rev. Accel. Beams
18
,
043401
(
2015
).
80.
C. T.
Parzyck
,
A.
Galdi
,
J. K.
Nangoi
,
W. J. I.
DeBenedetti
,
J.
Balajka
,
B. D.
Faeth
,
H.
Paik
,
C.
Hu
,
T. A.
Arias
,
M. A.
Hines
,
D. G.
Schlom
,
K. M.
Shen
, and
J. M.
Maxson
, “
A single-crystal alkali antimonide photocathode: High efficiency in the ultra-thin limit
,” arXiv:2112.14366 [physics.acc-ph] (
2021
).
81.
E. R.
Antoniuk
,
Y.
Yue
,
Y.
Zhou
,
P.
Schindler
,
W. A.
Schroeder
,
B.
Dunham
,
P.
Pianetta
,
T.
Vecchione
, and
E. J.
Reed
, “
Generalizable density functional theory based photoemission model for the accelerated development of photocathodes and other photoemissive devices
,”
Phys. Rev. B
101
,
235447
(
2020
).
82.
J. K.
Nangoi
,
S.
Karkare
,
R.
Sundararaman
,
H. A.
Padmore
, and
T. A.
Arias
, “
Importance of bulk excitations and coherent electron-photon-phonon scattering in photoemission from PbTe(111): Ab initio theory with experimental comparisons
,”
Phys. Rev. B
104
,
115132
(
2021
).
83.
R.
Schier
, “
An ab initio study of CsK2Sb surface facets
,” M.S. thesis,
Humboldt-Universität zu Berlin
,
2021
.
84.
H.-D.
Saßnick
and
C.
Cocchi
(
2021
). “
Data for `Exploring Cesium-Tellurium phase space via high-throughput calculations beyond the generalized-gradient approximation
,'” Zenodo.

Supplementary Material

You do not currently have access to this content.