Cellulose nanocrystals (CNCs) are naturally sourced elongated nanocolloids that form cholesteric phases in water and apolar solvents. It is well accepted that CNCs are made of bundles of crystalline microfibrils clustered side-by-side, and there is growing evidence that each individual microfibril is twisted. Yet, the origin of the chiral interactions between CNCs remains unclear. In this work, CNCs are described with a simple model of chiral hard splinters, enabling the prediction of the pitch using density functional theory and Monte Carlo simulations. The predicted pitch P compares well with experimental observations in cotton-based CNC dispersions in apolar solvents using surfactants but also with qualitative trends caused by fractionation or tip sonication in aqueous suspensions. These results suggest that the bundle shape induces an entropy-driven chiral interaction between CNCs, which is the missing link in explaining how chirality is transferred from the molecular scale of cellulose chains to the cholesteric order.

1.
E.
Kontturi
,
P.
Laaksonen
,
M. B.
Linder
,
A. H.
Nonappa
,
A. H.
Gröschel
,
O. J.
Rojas
, and
O.
Ikkala
, “
Advanced materials through assembly of nanocelluloses
,”
Adv. Mater.
30
,
1703779
(
2018
).
2.
J. R.
Barnett
and
V. A.
Bonham
, “
Cellulose microfibril angle in the cell wall of wood fibres
,”
Biol. Rev.
79
,
461
472
(
2004
).
3.
D. J.
Cosgrove
and
M. C.
Jarvis
, “
Comparative structure and biomechanics of plant primary and secondary cell walls
,”
Front. Plant Sci.
3
,
204
(
2012
).
4.
D. R.
Smyth
, “
Helical growth in plant organs: Mechanisms and significance
,”
Development
143
,
3272
3282
(
2016
).
5.
B. D.
Wilts
,
H. M.
Whitney
,
B. J.
Glover
,
U.
Steiner
, and
S.
Vignolini
, “
Natural helicoidal structures: Morphology, self-assembly and optical properties
,”
Mater. Today: Proc.
1
,
177
185
(
2014
).
6.
J.-F.
Revol
,
H.
Bradford
,
J.
Giasson
,
R. H.
Marchessault
, and
D. G.
Gray
, “
Helicoidal self-ordering of cellulose microfibrils in aqueous suspension
,”
Int. J. Biol. Macromol.
14
,
170
172
(
1992
).
7.
M.
Mitov
, “
Cholesteric liquid crystals in living matter
,”
Soft Matter
13
,
4176
4209
(
2017
).
8.
B.
Frka-Petesic
and
S.
Vignolini
, “
So much more than paper
,”
Nat. Photonics
13
,
365
367
(
2019
).
9.
Y.
Ogawa
, “
Release of internal molecular torque results in twists of glaucocystis cellulose nanofibers
,”
Carbohydr. Polym.
251
,
117102
(
2021
).
10.
A. N.
Fernandes
,
L. H.
Thomas
,
C. M.
Altaner
,
P.
Callow
,
V. T.
Forsyth
,
D. C.
Apperley
,
C. J.
Kennedy
, and
M. C.
Jarvis
, “
Nanostructure of cellulose microfibrils in spruce wood
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
E1195
E1203
(
2011
).
11.
J. P. F.
Lagerwall
,
C.
Schütz
,
M.
Salajkova
,
J.
Noh
,
J.
Hyun Park
,
G.
Scalia
, and
L.
Bergström
, “
Cellulose nanocrystal-based materials: From liquid crystal self-assembly and glass formation to multifunctional thin films
,”
NPG Asia Mater.
6
,
e80
(
2014
).
12.
C.
De Michele
,
L.
Rovigatti
,
T.
Bellini
, and
F.
Sciortino
, “
Self-assembly of short DNA duplexes: From a coarse-grained model to experiments through a theoretical link
,”
Soft Matter
8
,
8388
(
2012
).
13.
H. B.
Kolli
,
E.
Frezza
,
G.
Cinacchi
,
A.
Ferrarini
,
A.
Giacometti
,
T. S.
Hudson
,
C.
De Michele
, and
F.
Sciortino
, “
Self-assembly of hard helices: A rich and unconventional polymorphism
,”
Soft Matter
10
,
8171
8187
(
2014
).
14.
S.
Belli
,
S.
Dussi
,
M.
Dijkstra
, and
R.
van Roij
, “
Density functional theory for chiral nematic liquid crystals
,”
Phys. Rev. E
90
,
020503
(
2014
).
15.
S.
Dussi
,
S.
Belli
,
R.
van Roij
, and
M.
Dijkstra
, “
Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state
,”
J. Chem. Phys.
142
,
074905
(
2015
).
16.
Y.
Ogawa
, “
Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals
,”
Nanoscale
11
,
21767
21774
(
2019
).
17.
J.
Majoinen
,
J. S.
Haataja
,
D.
Appelhans
,
A.
Lederer
,
A.
Olszewska
,
J.
Seitsonen
,
V.
Aseyev
,
E.
Kontturi
,
H.
Rosilo
,
M.
Österberg
,
N.
Houbenov
, and
O.
Ikkala
, “
Supracolloidal multivalent interactions and wrapping of dendronized glycopolymers on native cellulose nanocrystals
,”
J. Am. Chem. Soc.
136
,
866
869
(
2014
).
18.
M.
Kaushik
,
K.
Basu
,
C.
Benoit
,
C. M.
Cirtiu
,
H.
Vali
, and
A.
Moores
, “
Cellulose nanocrystals as chiral inducers: Enantioselective catalysis and transmission electron microscopy 3D characterization
,”
J. Am. Chem. Soc.
137
,
6124
6127
(
2015
).
19.
L.
Onsager
, “
The effects of shape on the interaction of colloidal particles
,”
Ann. N. Y. Acad. Sci.
51
,
627
659
(
1949
).
20.
S. D.
Lee
, “
A numerical investigation of nematic ordering based on a simple hard-rod model
,”
J. Chem. Phys.
87
,
4972
4974
(
1987
).
21.
P.
Bolhuis
and
D.
Frenkel
, “
Tracing the phase boundaries of hard spherocylinders
,”
J. Chem. Phys.
106
,
666
687
(
1997
).
22.
H. H.
Wensink
and
G. J.
Vroege
, “
Isotropic–nematic phase behavior of length-polydisperse hard rods
,”
J. Chem. Phys.
119
,
6868
6882
(
2003
); arXiv:0304430 [cond-mat].
23.
J. D.
Parsons
, “
Nematic ordering in a system of rods
,”
Phys. Rev. A
19
,
1225
1230
(
1979
).
24.
T.
Odijk
, “
Theory of lyotropic polymer liquid crystals
,”
Macromolecules
19
,
2313
2329
(
1986
).
25.
A.
Stroobants
,
H. N. W.
Lekkerkerker
, and
T.
Odijk
, “
Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes
,”
Macromolecules
19
,
2232
2238
(
1986
).
26.
H. H.
Wensink
and
E.
Trizac
, “
Generalized Onsager theory for strongly anisometric patchy colloids
,”
J. Chem. Phys.
140
,
024901
(
2014
).
27.
X. M.
Dong
,
T.
Kimura
,
J.-F.
Revol
, and
D. G.
Gray
, “
Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites
,”
Langmuir
12
,
2076
2082
(
1996
).
28.
M. M. C.
Tortora
,
G.
Mishra
,
D.
Prešern
, and
J. P. K.
Doye
, “
Chiral shape fluctuations and the origin of chirality in cholesteric phases of DNA origamis
,”
Sci. Adv.
6
,
eaaw8331
(
2020
).
29.
A. B.
Harris
,
R. D.
Kamien
, and
T. C.
Lubensky
, “
Molecular chirality and chiral parameters
,”
Rev. Mod. Phys.
71
,
1745
(
1999
).
30.
J.-F.
Revol
and
R. H.
Marchessault
, “
In vitro chiral nematic ordering of chitin crystallites
,”
Int. J. Biol. Macromol.
15
,
329
(
1993
).
31.
W. J.
Orts
,
J.-F.
Revol
,
L.
Godbout
, and
R. H.
Marchessault
, “
SANS study of chirality and order in liquid crystalline cellulose suspensions
,”
MRS Online Proc. Libr. Arch.
376
,
317
(
1994
).
32.
J.
Araki
and
S.
Kuga
, “
Effect of trace electrolyte on liquid crystal type of cellulose microcrystals
,”
Langmuir
17
,
4493
4496
(
2001
).
33.
J.
Araki
,
M.
Wada
, and
S.
Kuga
, “
Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting
,”
Langmuir
17
,
21
27
(
2000
).
34.
L.
Heux
,
G.
Chauve
, and
C.
Bonini
, “
Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents
,”
Langmuir
16
,
8210
8212
(
2000
).
35.
J.
Yi
,
Q.
Xu
,
X.
Zhang
, and
H.
Zhang
, “
Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states
,”
Polymer
49
,
4406
4412
(
2008
).
36.
A.
Kuhnhold
and
T.
Schilling
, “
Isotropic-nematic transition and cholesteric phases of helical Yukawa rods
,”
J. Chem. Phys.
145
,
194904
(
2016
).
37.
C.
Honorato-Rios
,
A.
Kuhnhold
,
J. R.
Bruckner
,
R.
Dannert
,
T.
Schilling
, and
J. P. F.
Lagerwall
, “
Equilibrium liquid crystal phase diagrams and detection of kinetic arrest in cellulose nanocrystal suspensions
,”
Front. Mater.
3
,
21
(
2016
).
38.
J. P.
Straley
, “
Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering
,”
Phys. Rev. A
14
,
1835
1841
(
1976
).
39.
S.
Dussi
and
M.
Dijkstra
, “
Entropy-driven formation of chiral nematic phases by computer simulations
,”
Nat. Commun.
7
,
11175
(
2016
).
40.
Z.
Zhao
,
O. E.
Shklyaev
,
A.
Nili
,
M. N. A.
Mohamed
,
J. D.
Kubicki
,
V. H.
Crespi
, and
L.
Zhong
, “
Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis
,”
J. Phys. Chem. A
117
,
2580
2589
(
2013
).
41.
J.-F.
Revol
,
D. L.
Godbout
, and
D. G.
Gray
, “
Solid self-assembled films of cellulose with chiral nematic order and optically variable properties
,”
J. Pulp Pap. Sci.
24
,
146
(
1998
).
42.
L.
Chen
,
Q.
Wang
,
K.
Hirth
,
C.
Baez
,
U. P.
Agarwal
, and
J. Y.
Zhu
, “
Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis
,”
Cellulose
22
,
1753
(
2015
).
43.
S. J.
Hanley
,
J.-F.
Revol
,
L.
Godbout
, and
D. G.
Gray
, “
Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist
,”
Cellulose
4
,
209
220
(
1997
).
44.
S.
Elazzouzi-Hafraoui
,
Y.
Nishiyama
,
J.-L.
Putaux
,
L.
Heux
,
F.
Dubreuil
, and
C.
Rochas
, “
The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose
,”
Biomacromolecules
9
,
57
65
(
2008
).
45.
M.
Khandelwal
and
A.
Windle
, “
Origin of chiral interactions in cellulose supra-molecular microfibrils
,”
Carbohydr. Polym.
106
,
128
131
(
2014
).
46.
M.
Arcari
,
E.
Zuccarella
,
R.
Axelrod
,
J.
Adamcik
,
A.
Sánchez-Ferrer
,
R.
Mezzenga
, and
G.
Nyström
, “
Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density
,”
Biomacromolecules
20
,
1288
(
2019
).
47.
J. F.
Matthews
,
C. E.
Skopec
,
P. E.
Mason
,
P.
Zuccato
,
R. W.
Torget
,
J.
Sugiyama
,
M. E.
Himmel
, and
J. W.
Brady
, “
Computer simulation studies of microcrystalline cellulose iβ
,”
Carbohydr. Res.
341
,
138
152
(
2006
).
48.
A. D.
French
and
G. P.
Johnson
, “
Cellulose and the twofold screw axis: Modeling and experimental arguments
,”
Cellulose
16
,
959
(
2009
).
49.
K.
Conley
,
L.
Godbout
,
M. A.
Whitehead
, and
T. G. M.
Van De Ven
, “
Origin of the twist of cellulosic materials
,”
Carbohydr. Polym.
135
,
285
299
(
2016
).
50.
A.
Paajanen
,
S.
Ceccherini
,
T.
Maloney
, and
J. A.
Ketoja
, “
Chirality and bound water in the hierarchical cellulose structure
,”
Cellulose
26
,
5877
5892
(
2019
).
51.
T.
Dumitrică
, “
Intrinsic twist in iβ cellulose microfibrils by tight-binding objective boundary calculations
,”
Carbohydr. Polym.
230
,
115624
(
2020
).
52.
A. Y.
Mehandzhiyski
,
N.
Rolland
,
M.
Garg
,
J.
Wohlert
,
M.
Linares
, and
I.
Zozoulenko
, “
A novel supra coarse-grained model for cellulose
,”
Cellulose
27
,
4221
(
2020
).
53.
Y.
Habibi
,
L. A.
Lucia
, and
O. J.
Rojas
, “
Cellulose nanocrystals: Chemistry, self-assembly, and applications
,”
Chem. Rev.
110
,
3479
3500
(
2010
).
54.
C.
Bonini
,
L.
Heux
,
J.-Y.
Cavaillé
,
P.
Lindner
,
C.
Dewhurst
, and
P.
Terech
, “
Rodlike cellulose whiskers coated with surfactant: A small-angle neutron scattering characterization
,”
Langmuir
18
,
3311
3314
(
2002
).
55.
S.
Elazzouzi-Hafraoui
,
J.-L.
Putaux
, and
L.
Heux
, “
Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals
,”
J. Phys. Chem. B
113
,
11069
11075
(
2009
).
56.
B.
Frka-Petesic
,
B.
Jean
, and
L.
Heux
, “
First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals
,”
Europhys. Lett.
107
,
28006
(
2014
).
57.
T.
Odijk
, “
Pitch of a polymer cholesteric
,”
J. Phys. Chem.
91
,
6060
6062
(
1987
).
58.
J.
Majoinen
,
J.
Hassinen
,
J. S.
Haataja
,
H. T.
Rekola
,
E.
Kontturi
,
M. A.
Kostiainen
,
R. H. A.
Ras
,
P.
Törmä
, and
O.
Ikkala
, “
Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles
,”
Adv. Mater.
28
,
5262
5267
(
2016
).
59.
J.-F.
Revol
,
D. L.
Godbout
, and
D. G.
Gray
, “
Solidified liquid crystals of cellulose with optically variable properties
,” U.S. patent 5,629,055 (May 13,
1997
).
60.
S.
Beck
,
J.
Bouchard
, and
R.
Berry
, “
Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose
,”
Biomacromolecules
12
,
167
172
(
2011
).
61.
R. M.
Parker
,
G.
Guidetti
,
C. A.
Williams
,
T.
Zhao
,
A.
Narkevicius
,
S.
Vignolini
, and
B.
Frka-Petesic
, “
The self-assembly of cellulose nanocrystals: Hierarchical design of visual appearance
,”
Adv. Mater.
30
,
1704477
(
2018
).
62.
C.
Honorato-Rios
and
J. P. F.
Lagerwall
, “
Interrogating helical nanorod self-assembly with fractionated cellulose nanocrystal suspensions
,”
Commun. Mater.
1
,
69
(
2020
).
63.
C.
Honorato-Rios
,
C.
Lehr
,
C.
Schütz
,
R.
Sanctuary
,
M. A.
Osipov
,
J.
Baller
, and
J. P. F.
Lagerwall
, “
Fractionation of cellulose nanocrystals: Enhancing liquid crystal ordering without promoting gelation
,”
NPG Asia Mater.
10
,
455
465
(
2018
).
64.
P.
Oswald
and
P.
Pieranski
,
Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments
(
CRC Press
,
Boca Raton, FL
,
2005
), p.
648
.
65.
H. H.
Wensink
and
G.
Jackson
, “
Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics
,”
J. Chem. Phys.
130
,
234911
(
2009
).
66.
S.
Belli
,
A.
Patti
,
M.
Dijkstra
, and
R.
van Roij
, “
Polydispersity stabilizes biaxial nematic liquid crystals
,”
Phys. Rev. Lett.
107
,
148303
(
2011
).
67.
H. H.
Wensink
, “
Effect of size polydispersity on the pitch of nanorod cholesterics
,”
Crystals
9
,
143
(
2019
).
68.
X. M.
Dong
,
J.-F.
Revol
, and
D. G.
Gray
, “
Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
,”
Cellulose
5
,
19
32
(
1998
).
69.
K. W.
Klockars
,
B. L.
Tardy
,
M.
Borghei
,
A.
Tripathi
,
L. G.
Greca
, and
O. J.
Rojas
, “
Effect of anisotropy of cellulose nanocrystal suspensions on stratification, domain structure formation, and structural colors
,”
Biomacromolecules
19
,
2931
2943
(
2018
).
70.
R. M.
Parker
,
B.
Frka-Petesic
,
G.
Guidetti
,
G.
Kamita
,
G.
Consani
,
C.
Abell
, and
S.
Vignolini
, “
Hierarchical self-assembly of cellulose nanocrystals in a confined geometry
,”
ACS Nano
10
,
8443
8449
(
2016
).
71.
B.
Zhu
,
V. E.
Johansen
,
G.
Kamita
,
G.
Guidetti
,
M. M.
Bay
,
T. G.
Parton
,
B.
Frka-Petesic
, and
S.
Vignolini
, “
Hyperspectral imaging of photonic cellulose nanocrystal films: Structure of local defects and implications for self-assembly pathways
,”
ACS Nano
14
,
15361
15373
(
2020
).
72.
E.
Csiszar
,
P.
Kalic
,
A.
Kobol
, and
E. D. P.
Ferreira
, “
The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films
,”
Ultrason. Sonochem.
31
,
473
480
(
2016
).
73.
E.
Gicquel
,
J.
Bras
,
C.
Rey
,
J.-L.
Putaux
,
F.
Pignon
,
B.
Jean
, and
C.
Martin
, “
Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions
,”
Cellulose
26
,
7619
7634
(
2019
).
74.
Q.
Beuguel
,
J. R.
Tavares
,
P. J.
Carreau
, and
M.-C.
Heuzey
, “
Ultrasonication of spray- and freeze-dried cellulose nanocrystals in water
,”
J. Colloid Interface Sci.
516
,
23
33
(
2018
).
75.
A. B.
Harris
,
R. D.
Kamien
, and
T. C.
Lubensky
, “
Microscopic origin of cholesteric pitch
,”
Phys. Rev. Lett.
78
,
1476
(
1997
).
76.
C.
Schütz
,
J. R.
Bruckner
,
C.
Honorato-Rios
,
Z.
Tosheva
,
M.
Anyfantakis
, and
J. P. F.
Lagerwall
, “
From equilibrium liquid crystal formation and kinetic arrest to photonic bandgap films using suspensions of cellulose nanocrystals
,”
Crystals
10
,
199
(
2020
).
77.
M. A.
Osipov
, “
Molecular theory of solvent effect on cholesteric ordering in lyotropic polypeptide liquid crystals
,”
Chem. Phys.
96
,
259
270
(
1985
).
78.
T. G.
Parton
,
G. T.
van de Kerkhof
,
A.
Narkevicius
,
J. S.
Haataja
,
R. M.
Parker
,
B.
Frka-Petesic
, and
S.
Vignolini
, “
Chiral self-assembly of cellulose nanocrystals is driven by crystallite bundles
,” arXiv:2107.04772 (
2021
).
79.
W. M.
Saslow
,
M.
Gabay
, and
W.-M.
Zhang
, “
‘Spiraling’ algorithm: Collective Monte Carlo trial and self-determined boundary conditions for incommensurate spin systems
,”
Phys. Rev. Lett.
68
,
3627
3630
(
1992
).
80.
M.
Collins
and
W. M.
Saslow
, “
Temperature-dependent pitch and phase diagram for incommensurate XY spins in a slab geometry
,”
Phys. Rev. B
53
,
8533
8538
(
1996
).
81.
R.
Memmer
and
F.
Janssen
, “
Computer simulation of chiral liquid crystal phases. Part 5: Temperature dependence of the pitch of a cholesteric phase studied under self-determined boundary conditions
,”
J. Chem. Soc., Faraday Trans.
94
,
267
276
(
1998
).
82.
G.
Germano
,
M. P.
Allen
, and
A. J.
Masters
, “
Simultaneous calculation of the helical pitch and the twist elastic constant in chiral liquid crystals from intermolecular torques
,”
J. Chem. Phys.
116
,
9422
9430
(
2002
).
83.
S.
Růžička
and
H. H.
Wensink
, “
Simulating the pitch sensitivity of twisted nematics of patchy rods
,”
Soft Matter
12
,
5205
5213
(
2016
).
84.
S.
Varga
and
G.
Jackson
, “
Simulation of the macroscopic pitch of a chiral nematic phase of a model chiral mesogen
,”
Chem. Phys. Lett.
377
,
6
12
(
2003
).
85.
M. P.
Allen
,
G. T.
Evans
,
D.
Frenkel
, and
B. M.
Mulder
, “
Hard convex body fluids
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Ltd.
,
2007
), pp.
1
166
.

Supplementary Material

You do not currently have access to this content.