Bottlebrush polymers are a class of highly branched macromolecules that show promise for applications such as self-assembled photonic materials and tunable elastomers. However, computational studies of bottlebrush polymer solutions and melts remain challenging due to the high computational cost involved in explicitly accounting for the presence of side chains. Here, we consider a coarse-grained molecular model of bottlebrush polymers where the side chains are modeled implicitly, with the aim of expediting simulations by accessing longer length and time scales. The key ingredients of this model are the size of a coarse-grained segment and a suitably coarse-grained interaction potential between the non-bonded segments. Prior studies have not focused on developing explicit forms of such potentials, instead, relying on scaling arguments to model non-bonded interactions. Here, we show how to systematically calculate an interaction potential between the coarse-grained segments of bottlebrush from finer grained explicit side chain models using Monte Carlo and Brownian dynamics and then incorporate it into an implicit side chain model. We compare the predictions from our coarse-grained implicit side chain model with those obtained from models with explicit side chains in terms of the potential of mean force, the osmotic second virial coefficient, and the interpenetration function, highlighting the range of applicability and limitations of the coarse-grained representation. Although presented in the context of homopolymer bottlebrushes in athermal solvents, our proposed method can be extended to other solvent conditions as well as to different monomer chemistries. We expect that our implicit side chain model will prove useful for accelerating large-scale simulations of bottlebrush solutions and assembly.

1.
S.
Varlas
,
Z.
Hua
,
J. R.
Jones
,
M.
Thomas
,
J. C.
Foster
, and
R. K.
O’Reilly
,
Macromolecules
53
,
9747
(
2020
).
2.
E. R.
Sauvé
,
C. M.
Tonge
, and
Z. M.
Hudson
,
Chem. Mater.
32
,
2208
(
2020
).
3.
N. K.
Obhi
,
C. N.
Jarrett-Wilkins
,
G. E. J.
Hicks
, and
D. S.
Seferos
,
Macromolecules
53
,
8592
(
2020
).
4.
S.
Dhawan
,
H.
Singh
,
S.
Ghosh
,
V.
Khokhar
,
S.
Pandey
,
M.
Banerjee
, and
V.
Haridas
,
Chem. Commun.
56
,
12005
(
2020
).
5.
M. G.
Wessels
and
A.
Jayaraman
,
Soft Matter
16
,
623
(
2020
).
6.
E.
Ahmed
,
C. T.
Womble
, and
M.
Weck
,
Macromolecules
53
,
9018
(
2020
).
7.
K.
Chen
,
X.
Hu
,
N.
Zhu
, and
K.
Guo
,
Macromol. Rapid Commun.
41
,
2000357
(
2020
).
8.
G.
Xie
,
M. R.
Martinez
,
M.
Olszewski
,
S. S.
Sheiko
, and
K.
Matyjaszewski
,
Biomacromolecules
20
,
27
(
2019
).
9.
R.
Fenyves
,
M.
Schmutz
,
I. J.
Horner
,
F. V.
Bright
, and
J.
Rzayev
,
J. Am. Chem. Soc.
136
,
7762
(
2014
).
10.
R.
Xie
,
S.
Mukherjee
,
A. E.
Levi
,
V. G.
Reynolds
,
H.
Wang
,
M. L.
Chabinyc
, and
C. M.
Bates
,
Sci. Adv.
6
,
eabc6900
(
2020
).
11.
A. N.
Keith
,
M.
Vatankhah-Varnosfaderani
,
C.
Clair
,
F.
Fahimipour
,
E.
Dashtimoghadam
,
A.
Lallam
,
M.
Sztucki
,
D. A.
Ivanov
,
H.
Liang
,
A. V.
Dobrynin
, and
S. S.
Sheiko
,
ACS Cent. Sci.
6
,
413
(
2020
).
12.
M.
Vatankhah-Varnosfaderani
,
A. N.
Keith
,
Y.
Cong
,
H.
Liang
,
M.
Rosenthal
,
M.
Sztucki
,
C.
Clair
,
S.
Magonov
,
D. A.
Ivanov
,
A. V.
Dobrynin
, and
S. S.
Sheiko
,
Science
359
,
1509
(
2018
).
13.
M.
Vatankhah-Varnosfaderani
,
W. F. M.
Daniel
,
M. H.
Everhart
,
A. A.
Pandya
,
H.
Liang
,
K.
Matyjaszewski
,
A. V.
Dobrynin
, and
S. S.
Sheiko
,
Nature
549
,
497
(
2017
).
14.
M.
Vatankhah-Varnoosfaderani
,
W. F. M.
Daniel
,
A. P.
Zhushma
,
Q.
Li
,
B. J.
Morgan
,
K.
Matyjaszewski
,
D. P.
Armstrong
,
R. J.
Spontak
,
A. V.
Dobrynin
, and
S. S.
Sheiko
,
Adv. Mater.
29
,
1604209
(
2016
).
15.
S.
Nian
,
H.
Lian
,
Z.
Gong
,
M.
Zhernenkov
,
J.
Qin
, and
L.-H.
Cai
,
ACS Macro Lett.
8
,
1528
(
2019
).
16.
S.
Nian
,
J.
Zhu
,
H.
Zhang
,
Z.
Gong
,
G.
Freychet
,
M.
Zhernenkov
,
B.
Xu
, and
L.-H.
Cai
,
Chem. Mater.
33
,
2436
(
2021
).
17.
J.
Faivre
,
B. R.
Shrestha
,
G.
Xie
,
M.
Olszewski
,
V.
Adibnia
,
F.
Moldovan
,
A.
Montembault
,
G.
Sudre
,
T.
Delair
,
L.
David
,
K.
Matyjaszewski
, and
X.
Banquy
,
Chem. Mater.
30
,
4140
(
2018
).
18.
Y.
Xia
,
V.
Adibnia
,
R.
Huang
,
F.
Murschel
,
J.
Faivre
,
G.
Xie
,
M.
Olszewski
,
G.
De Crescenzo
,
W.
Qi
,
Z.
He
,
R.
Su
,
K.
Matyjaszewski
, and
X.
Banquy
,
Angew. Chem., Int. Ed.
58
,
1308
(
2018
).
19.
M. A.
Wade
,
D.
Walsh
,
J. C.-W.
Lee
,
E.
Kelley
,
K.
Weigandt
,
D.
Guironnet
, and
S. A.
Rogers
,
Soft Matter
16
,
4919
(
2020
).
20.
B. B.
Patel
,
D. J.
Walsh
,
D. H.
Kim
,
J.
Kwok
,
B.
Lee
,
D.
Guironnet
, and
Y.
Diao
,
Sci. Adv.
6
,
eaaz7202
(
2020
).
21.
J.
Lequieu
,
T.
Quah
,
K. T.
Delaney
, and
G. H.
Fredrickson
,
ACS Macro Lett.
9
,
1074
(
2020
).
22.
D.
Ndaya
,
R.
Bosire
, and
R. M.
Kasi
,
ACS Appl. Polym. Mater.
2
,
5511
(
2020
).
23.
A.
Liberman-Martin
,
C.
Chu
, and
R.
Grubbs
,
Macromol. Rapid Commun.
38
,
1700058
(
2017
).
24.
K. J.
Arrington
,
S. C.
Radzinski
,
K. J.
Drummey
,
T. E.
Long
, and
J. B.
Matson
,
ACS Appl. Mater. Interfaces
10
,
26662
(
2018
).
25.
J. L.
Self
,
C. S.
Sample
,
A. E.
Levi
,
K.
Li
,
R.
Xie
,
J. R.
de Alaniz
, and
C. M.
Bates
,
J. Am. Chem. Soc.
142
,
7567
(
2020
).
26.
V. P.
Beyer
,
A.
Monaco
,
R.
Napier
,
G.
Yilmaz
, and
C. R.
Becer
,
Biomacromolecules
21
,
2298
(
2020
).
27.
W. F. M.
Daniel
,
J.
Burdyńska
,
M.
Vatankhah-Varnoosfaderani
,
K.
Matyjaszewski
,
J.
Paturej
,
M.
Rubinstein
,
A. V.
Dobrynin
, and
S. S.
Sheiko
,
Nat. Mater.
15
,
183
(
2015
).
28.
H.
Liang
,
B. J.
Morgan
,
G.
Xie
,
M. R.
Martinez
,
E. B.
Zhulina
,
K.
Matyjaszewski
,
S. S.
Sheiko
, and
A. V.
Dobrynin
,
Macromolecules
51
,
10028
(
2018
).
29.
J.
Nam
,
Y.
Kim
,
J. G.
Kim
, and
M.
Seo
,
Macromolecules
52
,
9484
(
2019
).
30.
Y.
Saito
,
M.
Kikuchi
,
Y.
Jinbo
,
A.
Narumi
, and
S.
Kawaguchi
,
Macromolecules
48
,
8971
(
2015
).
31.
T.-P.
Lin
,
A. B.
Chang
,
S.-X.
Luo
,
H.-Y.
Chen
,
B.
Lee
, and
R. H.
Grubbs
,
ACS Nano
11
,
11632
(
2017
).
32.
F.
Shao
,
Y.
Wang
,
C. M.
Tonge
,
E. R.
Sauvé
, and
Z. M.
Hudson
,
Polym. Chem.
11
,
1062
(
2020
).
33.
E.
Mohammadi
,
S. Y.
Joshi
, and
S. A.
Deshmukh
,
Comput. Mater. Sci.
199
,
110720
(
2021
).
34.
H.-P.
Hsu
,
W.
Paul
,
S.
Rathgeber
, and
K.
Binder
,
Macromolecules
43
,
1592
(
2010
).
35.
I.
Lyubimov
,
M. G.
Wessels
, and
A.
Jayaraman
,
Macromolecules
51
,
7586
(
2018
).
36.
M. G.
Wessels
and
A.
Jayaraman
,
Soft Matter
15
,
3987
(
2019
).
37.
K. K.
Bejagam
,
S. K.
Singh
,
R.
Ahn
, and
S. A.
Deshmukh
,
Macromolecules
52
,
9398
(
2019
).
38.
A.
Yethiraj
,
J. Chem. Phys.
125
,
204901
(
2006
).
39.
Y.
Zhang
,
S.
Xi
,
A. V.
Parambathu
, and
W. G.
Chapman
,
Mol. Phys.
118
,
e1767812
(
2020
).
40.
K. R.
Gadelrab
and
A.
Alexander-Katz
,
J. Phys. Chem. B
124
,
11519
(
2020
).
41.
Y.
Chen
,
X.
Zhang
, and
Y.
Jiang
,
Soft Matter
16
,
8047
(
2020
).
42.
P. G.
Khalatur
and
A. R.
Khokhlov
,
J. Chem. Phys.
112
,
4849
(
2000
).
43.
S.
Dutta
,
T.
Pan
, and
C. E.
Sing
,
Macromolecules
52
,
4858
(
2019
).
44.
S.
Dutta
and
C. E.
Sing
,
Macromolecules
53
,
6946
(
2020
).
45.
T.
Pan
,
B. B.
Patel
,
D. J.
Walsh
,
S.
Dutta
,
D.
Guironnet
,
Y.
Diao
, and
C. E.
Sing
,
Macromolecules
54
,
3620
(
2021
).
46.
S.
Dutta
,
M. A.
Wade
,
D. J.
Walsh
,
D.
Guironnet
,
S. A.
Rogers
, and
C. E.
Sing
,
Soft Matter
15
,
2928
(
2019
).
47.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
48.
D. J.
Walsh
,
S.
Dutta
,
C. E.
Sing
, and
D.
Guironnet
,
Macromolecules
52
,
4847
(
2019
).
49.
H.
Yamakawa
,
Modern Theory of Polymer Solutions
(
Harper & Row
,
New York
,
1971
).
50.
A.
Yethiraj
,
K. G.
Honnell
, and
C. K.
Hall
,
Macromolecules
25
,
3979
(
1992
).
51.
J. M.
Wichert
and
C. K.
Hall
,
Macromolecules
27
,
2744
(
1994
).
52.
J.
Dautenhahn
and
C. K.
Hall
,
Macromolecules
27
,
5399
(
1994
).
53.
V. I.
Harismiadis
and
I.
Szleifer
,
Mol. Phys.
81
,
851
(
1994
).
54.
H.
Yamakawa
and
T.
Yoshizaki
,
J. Chem. Phys.
119
,
1257
(
2003
).
55.
B.
Roux
,
Comput. Phys. Commun.
91
,
275
(
1995
).
56.
I. M.
Withers
,
A. V.
Dobrynin
,
M. L.
Berkowitz
, and
M.
Rubinstein
,
J. Chem. Phys.
118
,
4721
(
2003
).
57.
D. L.
Ermak
and
J. A.
McCammon
,
J. Chem. Phys.
69
,
1352
(
1978
).
58.
R.
Auhl
,
R.
Everaers
,
G. S.
Grest
,
K.
Kremer
, and
S. J.
Plimpton
,
J. Chem. Phys.
119
,
12718
(
2003
).
59.
S.
Artemova
,
S.
Grudinin
, and
S.
Redon
,
J. Comput. Chem.
32
,
2865
(
2011
).
60.
M. P.
Howard
,
J. A.
Anderson
,
A.
Nikoubashman
,
S. C.
Glotzer
, and
A. Z.
Panagiotopoulos
,
Comput. Phys. Commun.
203
,
45
(
2016
).
61.
M. P.
Howard
,
A.
Statt
,
F.
Madutsa
,
T. M.
Truskett
, and
A. Z.
Panagiotopoulos
,
Comput. Mater. Sci.
164
,
139
(
2019
).
62.
R.
Rubinstein
and
M.
Colby
,
Polymer Physics
(
Oxford University Press
,
NY
,
2003
).
63.
Y.
Oono
,
Adv. Chem. Phys.
61
,
301
(
1985
).

Supplementary Material

You do not currently have access to this content.