Using non-equilibrium molecular dynamics simulations, we demonstrate the effect of concentration and alkali cation types (K+, Na+, and Li+) on the hydrodynamic slip of aqueous alkali chloride solutions in an uncharged graphene nanochannel. We modeled the graphene–electrolyte interactions using the potential of Williams et al. [J. Phys. Chem. Lett. 8, 703 (2017)], which uses optimized graphene–ion Lennard-Jones interaction parameters to effectively account for surface and solvent polarizability effects on the adsorption of ions in an aqueous solution to a graphene surface. In our study, the hydrodynamic slip exhibits a decreasing trend for alkali chloride solutions with increasing salt concentration. The NaCl solution shows the highest reduction in the slip length followed by KCl and LiCl solutions, and the reduction in the slip length is very much dependent on the salt type. We also compared the slip length with that calculated using a standard unoptimized interatomic potential obtained from the Lorentz–Berthelot mixing rule for the ion–carbon interactions, which is not adjusted to account for the surface and solvent polarizability at the graphene surface. In contrast to the optimized model, the slip length of alkali chloride solutions in the unoptimized model shows only a nominal change with salt concentration and is also independent of the nature of salts. Our study shows that adoption of the computationally inexpensive optimized potential of Williams et al. for the graphene–ion interactions has a significant influence on the calculation of slip lengths for electrolyte solutions in graphene-based nanofluidic devices.

1.
L.
Bocquet
and
J.-L.
Barrat
, “
Flow boundary conditions from nano- to micro-scales
,”
Soft Matter
3
,
685
693
(
2007
).
2.
C.
Neto
,
D. R.
Evans
,
E.
Bonaccurso
,
H.-J.
Butt
, and
V. S. J.
Craig
, “
Boundary slip in Newtonian liquids: A review of experimental studies
,”
Rep. Prog. Phys.
68
,
2859
(
2005
).
3.
K.
Wu
,
Z.
Chen
,
J.
Li
,
X.
Li
,
J.
Xu
, and
X.
Dong
, “
Wettability effect on nanoconfined water flow
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3358
3363
(
2017
).
4.
O. I.
Vinogradova
, “
Slippage of water over hydrophobic surfaces
,”
Int. J. Miner. Process.
56
,
31
60
(
1999
).
5.
P. A.
Thompson
and
S. M.
Troian
, “
A general boundary condition for liquid flow at solid surfaces
,”
Nature
389
,
360
362
(
1997
).
6.
F.
Brochard
and
P. G.
De Gennes
, “
Shear-dependent slippage at a polymer/solid interface
,”
Langmuir
8
,
3033
3037
(
1992
).
7.
R.
Pit
,
H.
Hervet
, and
L.
Léger
, “
Direct experimental evidence of slip in hexadecane: Solid interfaces
,”
Phys. Rev. Lett.
85
,
980
(
2000
).
8.
E.
Secchi
,
S.
Marbach
,
A.
Niguès
,
D.
Stein
,
A.
Siria
, and
L.
Bocquet
, “
Massive radius-dependent flow slippage in carbon nanotubes
,”
Nature
537
,
210
213
(
2016
).
9.
J. A.
Thomas
and
A. J. H.
McGaughey
, “
Reassessing fast water transport through carbon nanotubes
,”
Nano Lett.
8
,
2788
2793
(
2008
).
10.
C.
Sendner
,
D.
Horinek
,
L.
Bocquet
, and
R. R.
Netz
, “
Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion
,”
Langmuir
25
,
10768
10781
(
2009
).
11.
A. T.
Celebi
,
C. T.
Nguyen
,
R.
Hartkamp
, and
A.
Beskok
, “
The role of water models on the prediction of slip length of water in graphene nanochannels
,”
J. Chem. Phys.
151
,
174705
(
2019
).
12.
S.
Kumar Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations
,”
J. Chem. Phys.
136
,
024705
(
2012
).
13.
E.
Wagemann
,
E.
Oyarzua
,
J. H.
Walther
, and
H. A.
Zambrano
, “
Slip divergence of water flow in graphene nanochannels: The role of chirality
,”
Phys. Chem. Chem. Phys.
19
,
8646
8652
(
2017
).
14.
A.
Sam
,
R.
Hartkamp
,
S. K.
Kannam
, and
S. P.
Sathian
, “
Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations
,”
Nanotechnology
29
,
485404
(
2018
).
15.
S.
Joseph
and
N. R.
Aluru
, “
Why are carbon nanotubes fast transporters of water?
,”
Nano Lett.
8
,
452
458
(
2008
).
16.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
,
1073
1095
(
2010
).
17.
R. B.
Schoch
,
J.
Han
, and
P.
Renaud
, “
Transport phenomena in nanofluidics
,”
Rev. Mod. Phys.
80
,
839
(
2008
).
18.
H.
Daiguji
,
P.
Yang
, and
A.
Majumdar
, “
Ion transport in nanofluidic channels
,”
Nano Lett.
4
,
137
142
(
2004
).
19.
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
, “
Hydrodynamics within the electric double layer on slipping surfaces
,”
Phys. Rev. Lett.
93
,
257805
(
2004
).
20.
C. I.
Bouzigues
,
P.
Tabeling
, and
L.
Bocquet
, “
Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces
,”
Phys. Rev. Lett.
101
,
114503
(
2008
).
21.
O. I.
Vinogradova
,
E. F.
Silkina
,
N.
Bag
, and
E. S.
Asmolov
, “
Achieving large zeta-potentials with charged porous surfaces
,”
Phys. Fluids
32
,
102105
(
2020
).
22.
R.
Qiao
and
N. R.
Aluru
, “
Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube
,”
Nano Lett.
3
,
1013
1017
(
2003
).
23.
L.
Joly
,
C.
Ybert
,
E.
Trizac
, and
L.
Bocquet
, “
Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics
,”
J. Chem. Phys.
125
,
204716
(
2006
).
24.
Y.
Xie
,
L.
Fu
,
T.
Niehaus
, and
L.
Joly
, “
Liquid-solid slip on charged walls: The dramatic impact of charge distribution
,”
Phys. Rev. Lett.
125
,
014501
(
2020
).
25.
S. R.
Maduar
,
A. V.
Belyaev
,
V.
Lobaskin
, and
O. I.
Vinogradova
, “
Electrohydrodynamics near hydrophobic surfaces
,”
Phys. Rev. Lett.
114
,
118301
(
2015
).
26.
A.
Dukhin
,
S.
Dukhin
, and
P.
Goetz
, “
Electrokinetics at high ionic strength and hypothesis of the double layer with zero surface charge
,”
Langmuir
21
,
9990
9997
(
2005
).
27.
D. M.
Huang
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Aqueous electrolytes near hydrophobic surfaces: Dynamic effects of ion specificity and hydrodynamic slip
,”
Langmuir
24
,
1442
1450
(
2008
).
28.
S.
Joseph
and
N. R.
Aluru
, “
Hierarchical multiscale simulation of electrokinetic transport in silica nanochannels at the point of zero charge
,”
Langmuir
22
,
9041
9051
(
2006
).
29.
D.
Horinek
and
R. R.
Netz
, “
Specific ion adsorption at hydrophobic solid surfaces
,”
Phys. Rev. Lett.
99
,
226104
(
2007
).
30.
P.
Jungwirth
and
D. J.
Tobias
, “
Specific ion effects at the air/water interface
,”
Chem. Rev.
106
,
1259
1281
(
2006
).
31.
R. R.
Netz
and
D.
Horinek
, “
Progress in modeling of ion effects at the vapor/water interface
,”
Annu. Rev. Phys. Chem.
63
,
401
418
(
2012
).
32.
D. J.
Tobias
,
A. C.
Stern
,
M. D.
Baer
,
Y.
Levin
, and
C. J.
Mundy
, “
Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces
,”
Annu. Rev. Phys. Chem.
64
,
339
359
(
2013
).
33.
D.
Horinek
,
A.
Herz
,
L.
Vrbka
,
F.
Sedlmeier
,
S. I.
Mamatkulov
, and
R. R.
Netz
, “
Specific ion adsorption at the air/water interface: The role of hydrophobic solvation
,”
Chem. Phys. Lett.
479
,
173
183
(
2009
).
34.
D. J. V. A.
dos Santos
,
F.
Müller-Plathe
, and
V. C.
Weiss
, “
Consistency of ion adsorption and excess surface tension in molecular dynamics simulations of aqueous salt solutions
,”
J. Phys. Chem. C
112
,
19431
19442
(
2008
).
35.
C.
Caleman
,
J. S.
Hub
,
P. J.
van Maaren
, and
D.
van der Spoel
, “
Atomistic simulation of ion solvation in water explains surface preference of halides
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
6838
6842
(
2011
).
36.
G.
Shi
,
J.
Liu
,
C.
Wang
,
B.
Song
,
Y.
Tu
,
J.
Hu
, and
H.
Fang
, “
Ion enrichment on the hydrophobic carbon-based surface in aqueous salt solutions due to cation-π interactions
,”
Sci. Rep.
3
,
3436
(
2013
).
37.
T. A.
Pham
,
S. M. G.
Mortuza
,
B. C.
Wood
,
E. Y.
Lau
,
T.
Ogitsu
,
S. F.
Buchsbaum
,
Z. S.
Siwy
,
F.
Fornasiero
, and
E.
Schwegler
, “
Salt solutions in carbon nanotubes: The role of cation-π interactions
,”
J. Phys. Chem. C
120
,
7332
7338
(
2016
).
38.
E. V.
Anslyn
and
D. A.
Dougherty
,
Modern Physical Organic Chemistry
(
University Science Books
,
2006
).
39.
D. A.
Dougherty
, “
Cation-π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp
,”
Science
271
,
163
168
(
1996
).
40.
E.
Cubero
,
F. J.
Luque
, and
M.
Orozco
, “
Is polarization important in cation-π interactions?
,”
Proc. Natl. Acad. Sci. U. S. A.
95
,
5976
5980
(
1998
).
41.
J. W.
Caldwell
and
P. A.
Kollman
, “
Cation-π interactions: Nonadditive effects are critical in their accurate representation
,”
J. Am. Chem. Soc.
117
,
4177
4178
(
1995
).
42.
P.-A.
Cazade
,
J.
Dweik
,
B.
Coasne
,
F.
Henn
, and
J.
Palmeri
, “
Molecular simulation of ion-specific effects in confined electrolyte solutions using polarizable forcefields
,”
J. Phys. Chem. C
114
,
12245
12257
(
2010
).
43.
P.-A.
Cazade
,
R.
Hartkamp
, and
B.
Coasne
, “
Structure and dynamics of an electrolyte confined in charged nanopores
,”
J. Phys. Chem. C
118
,
5061
5072
(
2014
).
44.
Q.
Shao
,
J.
Zhou
,
L.
Lu
,
X.
Lu
,
Y.
Zhu
, and
S.
Jiang
, “
Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes
,”
Nano Lett.
9
,
989
994
(
2009
).
45.
D. J.
Cole
,
P. K.
Ang
, and
K. P.
Loh
, “
Ion adsorption at the graphene/electrolyte interface
,”
J. Phys. Chem. Lett.
2
,
1799
1803
(
2011
).
46.
F.
Aydin
,
A.
Moradzadeh
,
C. L.
Bilodeau
,
E. Y.
Lau
,
E.
Schwegler
,
N. R.
Aluru
, and
T. A.
Pham
, “
Ion solvation and transport in narrow carbon nanotubes: Effects of polarizability, cation-π interaction, and confinement
,”
J. Chem. Theory Comput.
17
,
1596
1605
(
2021
).
47.
C. D.
Williams
,
J.
Dix
,
A.
Troisi
, and
P.
Carbone
, “
Effective polarization in pairwise potentials at the graphene–electrolyte interface
,”
J. Phys. Chem. Lett.
8
,
703
708
(
2017
).
48.
J.
Dockal
,
F.
Moucka
, and
M.
Lisal
, “
Molecular dynamics of graphene–electrolyte interface: Interfacial solution structure and molecular diffusion
,”
J. Phys. Chem. C
123
,
26379
26396
(
2019
).
49.
S.
Guo
,
E. R.
Meshot
,
T.
Kuykendall
,
S.
Cabrini
, and
F.
Fornasiero
, “
Nanofluidic transport through isolated carbon nanotube channels: Advances, controversies, and challenges
,”
Adv. Mater.
27
,
5726
5737
(
2015
).
50.
D.
Cohen-Tanugi
and
J. C.
Grossman
, “
Water desalination across nanoporous graphene
,”
Nano Lett.
12
,
3602
3608
(
2012
).
51.
H.
Dai
,
Z.
Xu
, and
X.
Yang
, “
Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: A molecular dynamics simulation
,”
J. Phys. Chem. C
120
,
22585
22596
(
2016
).
52.
V. P.
Kurupath
,
S. K.
Kannam
,
R.
Hartkamp
, and
S. P.
Sathian
, “
Highly efficient water desalination through hourglass shaped carbon nanopores
,”
Desalination
505
,
114978
(
2021
).
53.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
54.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
55.
I. S.
Joung
and
T. E.
Cheatham
 III
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
56.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
57.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
, “
On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes
,”
J. Phys. Chem. B
107
,
1345
1352
(
2003
).
58.
A. Y.
Toukmaji
and
J. A.
Board
, Jr.
, “
Ewald summation techniques in perspective: A survey
,”
Comput. Phys. Commun.
95
,
73
92
(
1996
).
59.
S. J.
Stuart
,
A. B.
Tutein
, and
J. A.
Harrison
, “
A reactive potential for hydrocarbons with intermolecular interactions
,”
J. Chem. Phys.
112
,
6472
6486
(
2000
).
60.
X.
Li
,
A.
Wang
, and
K.-R.
Lee
, “
Comparison of empirical potentials for calculating structural properties of amorphous carbon films by molecular dynamics simulation
,”
Comput. Mater. Sci.
151
,
246
254
(
2018
).
61.
E. M.
Kotsalis
,
J. H.
Walther
, and
P.
Koumoutsakos
, “
Multiphase water flow inside carbon nanotubes
,”
Int. J. Multiphase Flow
30
,
995
1010
(
2004
).
62.
G. S.
Grest
and
K.
Kremer
, “
Molecular dynamics simulation for polymers in the presence of a heat bath
,”
Phys. Rev. A
33
,
3628
(
1986
).
63.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
64.
G. A.
Orozco
,
O. A.
Moultos
,
H.
Jiang
,
I. G.
Economou
, and
A. Z.
Panagiotopoulos
, “
Molecular simulation of thermodynamic and transport properties for the H2O + NaCl system
,”
J. Chem. Phys.
141
,
234507
(
2014
).
65.
S.
Yue
and
A. Z.
Panagiotopoulos
, “
Dynamic properties of aqueous electrolyte solutions from non-polarisable, polarisable, and scaled-charge models
,”
Mol. Phys.
117
,
3538
3549
(
2019
).
66.
E.
Pluharova
,
P. E.
Mason
, and
P.
Jungwirth
, “
Ion pairing in aqueous lithium salt solutions with monovalent and divalent counter-anions
,”
J. Phys. Chem. A
117
,
11766
11773
(
2013
).
67.
K. P.
Travis
,
B. D.
Todd
, and
D. J.
Evans
, “
Departure from Navier-Stokes hydrodynamics in confined liquids
,”
Phys. Rev. E
55
,
4288
(
1997
).
68.
C.
Herrero
,
T.
Omori
,
Y.
Yamaguchi
, and
L.
Joly
, “
Shear force measurement of the hydrodynamic wall position in molecular dynamics
,”
J. Chem. Phys.
151
,
041103
(
2019
).
69.
S.
Balasubramanian
,
C. J.
Mundy
, and
M. L.
Klein
, “
Shear viscosity of polar fluids: Molecular dynamics calculations of water
,”
J. Chem. Phys.
105
,
11190
11195
(
1996
).
70.
G.-J.
Guo
and
Y.-G.
Zhang
, “
Equilibrium molecular dynamics calculation of the bulk viscosity of liquid water
,”
Mol. Phys.
99
,
283
289
(
2001
).
71.
B.
Hess
, “
Determining the shear viscosity of model liquids from molecular dynamics simulations
,”
J. Chem. Phys.
116
,
209
217
(
2002
).
72.
M. A.
González
and
J. L. F.
Abascal
, “
The shear viscosity of rigid water models
,”
J. Chem. Phys.
132
,
096101
(
2010
).
73.
T.
Chen
,
B.
Smit
, and
A. T.
Bell
, “
Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?
,”
J. Chem. Phys.
131
,
246101
(
2009
).
74.
S.
Tazi
,
A.
Boţan
,
M.
Salanne
,
V.
Marry
,
P.
Turq
, and
B.
Rotenberg
, “
Diffusion coefficient and shear viscosity of rigid water models
,”
J. Phys.: Condens. Matter
24
,
284117
(
2012
).
75.
D. E.
Goldsack
and
R.
Franchetto
, “
The viscosity of concentrated electrolyte solutions. I. Concentration dependence at fixed temperature
,”
Can. J. Chem.
55
,
1062
1072
(
1977
).
76.
K. D.
Collins
, “
Charge density-dependent strength of hydration and biological structure
,”
Biophys. J.
72
,
65
76
(
1997
).
77.
R.
Hartkamp
and
B.
Coasne
, “
Structure and transport of aqueous electrolytes: From simple halides to radionuclide ions
,”
J. Chem. Phys.
141
,
124508
(
2014
).
78.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
Slip flow in graphene nanochannels
,”
J. Chem. Phys.
135
,
144701
(
2011
).
79.
C.
Bakli
and
S.
Chakraborty
, “
Effect of presence of salt on the dynamics of water in uncharged nanochannels
,”
J. Chem. Phys.
138
,
054504
(
2013
).
You do not currently have access to this content.