The lifetime and health of lithium metal batteries are greatly hindered by nonuniform deposition and growth of lithium at the anode–electrolyte interface, which leads to dendrite formation, efficiency loss, and short circuiting. Lithium deposition is influenced by several factors including local current densities, overpotentials, surface heterogeneity, and lithium-ion concentrations. However, due to the embedded, dynamic nature of this interface, it is difficult to observe the complex physics operando. Here, we present a detailed model of the interface that implements Butler–Volmer kinetics to investigate the effects of overpotential and surface heterogeneities on dendrite growth. A high overpotential has been proposed as a contributing factor in increased nucleation and growth of dendrites. Using computational methods, we can isolate the aspects of the complex physics at the interface to gain better insight into how each component affects the overall system. In addition, studies have shown that mechanical modifications to the anode surface, such as micropatterning, are a potential way of controlling deposition and increasing Coulombic efficiency. Micropatterns on the anode surface are explored along with deformations in the solid–electrolyte interface layer to understand their effects on the dendritic growth rates and morphology. The study results show that at higher overpotentials, more dendritic growth and a more branched morphology are present in comparison to low overpotentials, where more uniform and denser growth is observed. In addition, the results suggest that there is a relationship between surface chemistries and anode geometries.

1.
B.
Liu
,
J.-G.
Zhang
, and
W.
Xu
,
Joule
2
,
833
(
2018
).
2.
X.
Guan
,
A.
Wang
,
S.
Liu
,
G.
Li
,
F.
Liang
,
Y. W.
Yang
,
X.
Liu
, and
J.
Luo
,
Small
14
,
1801423
(
2018
).
3.
Y.
Liu
,
X.
Xu
,
M.
Sadd
,
O. O.
Kapitanova
,
V. A.
Krivchenko
,
J.
Ban
,
J.
Wang
,
X.
Jiao
,
Z.
Song
,
J.
Song
,
S.
Xiong
, and
A.
Matic
,
Adv. Sci.
8
,
2003301
(
2021
).
4.
J.
Tan
,
A. M.
Tartakovsky
,
K.
Ferris
, and
E. M.
Ryan
,
J. Electrochem. Soc.
163
,
A318
(
2016
).
5.
D.
Sharon
,
P.
Bennington
,
S. N.
Patel
, and
P. F.
Nealey
,
ACS Energy Lett.
5
,
2889
(
2020
).
6.
G.
Wang
,
X.
Xiong
,
D.
Xie
,
X.
Fu
,
X.
Ma
,
Y.
Li
,
Y.
Liu
,
Z.
Lin
,
C.
Yang
, and
M.
Liu
,
Energy Storage Mater.
23
,
701
(
2019
).
7.
Y.
Wang
,
Z.
Wang
,
D.
Lei
,
W.
Lv
,
Q.
Zhao
,
B.
Ni
,
Y.
Liu
,
B.
Li
,
F.
Kang
, and
Y.-B.
He
,
ACS Appl. Mater. Interfaces
10
,
20244
(
2018
).
8.
C.
Li
,
S.
Liu
,
C.
Shi
,
G.
Liang
,
Z.
Lu
,
R.
Fu
, and
D.
Wu
,
Nat. Commun.
10
,
1363
(
2019
).
9.
Y.
Ren
,
Y.
Zhou
, and
Y.
Cao
,
J. Phys. Chem. C
124
,
12195
(
2020
).
10.
R.
Pathak
,
K.
Chen
,
A.
Gurung
,
K. M.
Reza
,
B.
Bahrami
,
J.
Pokharel
,
A.
Baniya
,
W.
He
,
F.
Wu
,
Y.
Zhou
,
K.
Xu
, and
Q.
Qiao
,
Nat. Commun.
11
,
93
(
2020
).
11.
M.-H.
Ryou
,
Y. M.
Lee
,
Y.
Lee
,
M.
Winter
, and
P.
Bieker
,
Adv. Funct. Mater.
25
,
834
(
2015
).
12.
J.
Becking
,
A.
Gröbmeyer
,
M.
Kolek
,
U.
Rodehorst
,
S.
Schulze
,
M.
Winter
,
P.
Bieker
, and
M. C.
Stan
,
Adv. Mater. Interfaces
4
,
1700166
(
2017
).
13.
W.
Liu
,
D.
Lin
,
A.
Pei
, and
Y.
Cui
,
J. Am. Chem. Soc.
138
,
15443
(
2016
).
14.
Y.-J.
Kim
,
H. S.
Jin
,
D.-H.
Lee
,
J.
Choi
,
W.
Jo
,
H.
Noh
,
J.
Lee
,
H.
Chu
,
H.
Kwack
,
F.
Ye
,
H.
Lee
,
M.-H.
Ryou
, and
H.-T.
Kim
,
ChemElectroChem
5
,
3169
(
2018
).
15.
Q.
Li
,
B.
Quan
,
W.
Li
,
J.
Lu
,
J.
Zheng
,
X.
Yu
,
J.
Li
, and
H.
Li
,
Nano Energy
45
,
463
(
2018
).
16.
H. H.
Chang
,
Phys. Rev. E
78
,
056704
(
2008
).
17.
J.
Tan
,
A.
Cannon
, and
E.
Ryan
,
J. Power Sources
463
,
228187
(
2020
).
18.
A.
Pei
,
G.
Zheng
,
F.
Shi
,
Y.
Li
, and
Y.
Cui
,
Nano Lett.
17
,
1132
(
2017
).
19.
A.
Aryanfar
,
T.
Cheng
,
A. J.
Colussi
,
B. v.
Merinov
,
W. A.
Goddard
, and
M. R.
Hoffmann
,
J. Chem. Phys.
143
,
134701
(
2015
).
20.
G.
Yoon
,
S.
Moon
,
G.
Ceder
, and
K.
Kang
,
Chem. Mater.
30
,
6769
(
2018
).
21.
Z.
Hong
and
V.
Viswanathan
,
ACS Energy Lett.
3
,
1737
(
2018
).
22.
B. S.
Vishnugopi
,
F.
Hao
,
A.
Verma
, and
P. P.
Mukherjee
,
ACS Appl. Mater. Interfaces
12
,
23931
(
2020
).
23.
X.
Shen
,
R.
Zhang
,
P.
Shi
,
X.
Chen
,
Q.
Zhang
,
X.
Shen
,
P.
Shi
,
X.
Chen
,
Q.
Zhang
, and
R.
Zhang
,
Adv. Energy Mater.
11
,
2003416
(
2021
).
24.
J.
Tan
and
E. M.
Ryan
,
J. Power Sources
323
,
67
(
2016
).
25.
A.
Cannon
,
J. G.
McDaniel
, and
E.
Ryan
, “
Smoothed particle hydrodynamics modeling of electrodeposition and dendritic growth under migration- and diffusion-controlled mass transport
,”
Comput. Mater. Sci.
(unpublished) (
2021
).
26.
R. A.
Gingold
and
J. J.
Monaghan
,
Mon. Not. R. Astron. Soc.
181
,
375
(
1977
).
27.
J. J.
Monaghan
,
Rep. Prog. Phys.
68
,
1703
(
2005
).
28.
J. J.
Monaghan
,
Annu. Rev. Fluid Mech.
44
,
323
(
2012
).
29.
A.
Bard
and
L.
Faulkner
,
Electrochemical Methods
(
John Wiley & Sons, Inc.
,
2001
).
30.
E. J. F.
Dickinson
and
A. J.
Wain
,
J. Electroanal. Chem.
872
,
114145
(
2020
).
31.
J.
Newman
and
K.
Thomas-Alyea
,
Electrochemical Systems
(
John Wiley & Sons, Inc.
,
2004
).
32.
A. M.
Tartakovsky
,
P.
Meakin
,
T. D.
Scheibe
, and
R. M.
Eichler West
,
J. Comput. Phys.
222
,
654
(
2007
).
33.
F.
Hao
,
A.
Verma
, and
P. P.
Mukherjee
,
J. Mater. Chem. A
6
,
19664
(
2018
).
34.
W.
He
,
M.
Pecht
,
D.
Flynn
, and
F.
Dinmohammadi
,
Energies
11
,
2120
(
2018
).
35.
E. M.
Ryan
,
A. M.
Tartakovsky
, and
C.
Amon
,
Comput. Phys. Commun.
181
,
2008
(
2010
).
36.
P.
Bai
,
J.
Li
,
F. R.
Brushett
, and
M. Z.
Bazant
,
Energy Environ. Sci.
9
,
3221
(
2016
).
37.
H.
Sano
,
H.
Sakaebe
,
H.
Senoh
, and
H.
Matsumoto
,
J. Electrochem. Soc.
161
,
A1236
(
2014
).
38.
Y. S.
Cohen
,
Y.
Cohen
, and
D.
Aurbach
,
J. Phys. Chem. B
104
,
12282
(
2000
).
You do not currently have access to this content.