We control the anisotropic molecular packing of vapor-deposited glasses of ABH113, a deuterated anthracene derivative with promise for future organic light emitting diode materials, by changing the deposition rate and substrate temperature at which they are prepared. We find that at substrate temperatures from 0.65 Tg to 0.92 Tg, the deposition rate significantly modifies the orientational order in the vapor-deposited glasses as characterized by x-ray scattering and birefringence. Both measures of anisotropic order can be described by a single deposition rate–substrate temperature superposition (RTS). This supports the applicability of the surface equilibration mechanism and generalizes the RTS principle from previous model systems with liquid crystalline order to non-mesogenic organic semiconductors. We find that vapor-deposited glasses of ABH113 have significantly enhanced density and thermal stability compared to their counterparts prepared by liquid-cooling. For organic semiconductors, the results of this study provide an efficient guide for using the deposition rate to prepare stable glasses with controlled molecular packing.

1.
C. W.
Tang
and
S. A.
Vanslyke
,
Appl. Phys. Lett.
51
(
12
),
913
915
(
1987
).
2.
J.-H.
Lee
,
C.-H.
Chen
,
P.-H.
Lee
,
H.-Y.
Lin
,
M.-k.
Leung
,
T.-L.
Chiu
, and
C.-F.
Lin
,
J. Mater. Chem. C
7
(
20
),
5874
5888
(
2019
).
3.
Y.
Huang
,
E.-L.
Hsiang
,
M.-Y.
Deng
, and
S.-T.
Wu
,
Light: Sci. Appl.
9
(
1
),
105
(
2020
).
4.
S.
Wang
,
H.
Zhang
,
B.
Zhang
,
Z.
Xie
, and
W.-Y.
Wong
,
Mater. Sci. Eng., R
140
,
100547
(
2020
).
5.
PRNewswire Research and Markets “The Worldwide OLED Industry is Expected to Reach $72.8 Billion by 2026 at a CAGR of 13.6% from 2021”. (
April 7th, 2021
); available at https://www.prnewswire.com/news-releases/the-worldwide-oled-industry-is-expected-to-reach-72-8-billion-by-2026-at-a-cagr-of-13-6-from-2021--301264145.html.
6.
C.
Murawski
and
M. C.
Gather
,
Adv. Opt. Mater.
9
,
2100269
(
2021
).
7.
Y.
Shirota
and
H.
Kageyama
,
Handbook of Organic Materials for Optical and (Opto)Electronic Devices: Properties and Applications
(
Woodhead Publishing
,
2013
), pp.
3
82
.
8.
M.-H.
Ho
,
B.
Balaganesan
, and
C. H. F.
Chen
,
Isr. J. Chem.
52
(
6
),
484
495
(
2012
).
9.
M.
Pope
,
H. P.
Kallmann
, and
P.
Magnante
,
J. Chem. Phys.
38
(
8
),
2042
2043
(
1963
).
10.
J.
Huang
,
J.-H.
Su
, and
H.
Tian
,
J. Mater. Chem.
22
(
22
),
10977
10989
(
2012
).
11.
M.
Aydemir
,
G.
Haykır
,
A.
Battal
,
V.
Jankus
,
S. K.
Sugunan
,
F. B.
Dias
,
H.
Al-Attar
,
F.
Türksoy
,
M.
Tavaslı
, and
A. P.
Monkman
,
Org. Electron.
30
(
C
),
149
157
(
2016
).
12.
I.
Cho
,
S. H.
Kim
,
J. H.
Kim
,
S.
Park
, and
S. Y.
Park
,
J. Mater. Chem.
22
(
1
),
123
129
(
2012
).
13.
H.
Park
,
J.
Lee
,
I.
Kang
,
H. Y.
Chu
,
J.-I.
Lee
,
S.-K.
Kwon
, and
Y.-H.
Kim
,
J. Mater. Chem.
22
(
6
),
2695
2700
(
2012
).
14.
M.-T.
Lee
,
H.-H.
Chen
,
C.-H.
Liao
,
C.-H.
Tsai
, and
C. H.
Chen
,
Appl. Phys. Lett.
85
(
15
),
3301
3303
(
2004
).
15.
M.-T.
Lee
,
C.-H.
Liao
,
C.-H.
Tsai
, and
C. H.
Chen
,
Adv. Mater.
17
(
20
),
2493
2497
(
2005
).
16.
H.
Tsuji
,
C.
Mitsui
, and
E.
Nakamura
,
Chem. Commun.
50
(
94
),
14870
14872
(
2014
).
17.
A.
Danos
,
R. W.
MacQueen
,
Y. Y.
Cheng
,
M.
Dvořák
,
T. A.
Darwish
,
D. R.
McCamey
, and
T. W.
Schmidt
,
J. Phys. Chem. Lett.
6
(
15
),
3061
3066
(
2015
).
18.
Y.
Lee
,
E. J.
Jang
,
H.
Seo
, and
D. Y.
Chung
, U.S. patent 11038112 (
June 15th, 2021
).
19.
P.
Wang
,
F.-F.
Wang
,
Y.
Chen
,
Q.
Niu
,
L.
Lu
,
H.-M.
Wang
,
X.-C.
Gao
,
B.
Wei
,
H.-W.
Wu
,
X.
Cai
, and
D.-C.
Zou
,
J. Mater. Chem. C
1
(
32
),
4821
4825
(
2013
).
20.
C. C.
Tong
and
K. C.
Hwang
,
J. Phys. Chem. C
111
(
8
),
3490
3494
(
2007
).
21.
D.
Yokoyama
,
J. Mater. Chem.
21
,
19187
19202
(
2011
).
22.
J.
Frischeisen
,
D.
Yokoyama
,
C.
Adachi
, and
W.
Brütting
,
Appl. Phys. Lett.
96
(
7
),
073302
(
2010
).
23.
M.
Shibata
,
Y.
Sakai
, and
D.
Yokoyama
,
J. Mater. Chem. C
3
(
42
),
11178
11191
(
2015
).
24.
S. S.
Dalal
,
D. M.
Walters
,
I.
Lyubimov
,
J. J.
de Pablo
, and
M. D.
Ediger
,
Proc. Natl. Acad. Sci. U. S. A.
112
(
14
),
4227
(
2015
).
25.
S. F.
Swallen
,
K. L.
Kearns
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
,
M. D.
Ediger
,
T.
Wu
,
L.
Yu
, and
S.
Satija
,
Science
315
(
5810
),
353
(
2007
).
26.
T. D.
Schmidt
,
T.
Lampe
,
D.
Sylvinson M. R
,
P. I.
Djurovich
,
M. E.
Thompson
, and
W.
Brütting
,
Phys. Rev. Appl.
8
(
3
),
037001
(
2017
).
27.
C.
Mayr
and
W.
Brütting
,
Chem. Mater.
27
(
8
),
2759
2762
(
2015
).
28.
L.
Berthier
,
P.
Charbonneau
,
E.
Flenner
, and
F.
Zamponi
,
Phys. Rev. Lett.
119
(
18
),
188002
(
2017
).
29.
J.
Ràfols-Ribé
,
P.-A.
Will
,
C.
Hänisch
,
M.
Gonzalez-Silveira
,
S.
Lenk
,
J.
Rodríguez-Viejo
, and
S.
Reineke
,
Sci. Adv.
4
(
5
),
eaar8332
(
2018
).
30.
C.
Bishop
,
Z.
Chen
,
M. F.
Toney
,
H.
Bock
,
L.
Yu
, and
M. D.
Ediger
,
J. Phys. Chem. B
125
(
10
),
2761
2770
(
2021
).
31.
C.
Bishop
,
A.
Gujral
,
M. F.
Toney
,
L.
Yu
, and
M. D.
Ediger
,
J. Phys. Chem. Lett.
10
(
13
),
3536
3542
(
2019
).
32.
C.
Bishop
,
Y.
Li
,
M. F.
Toney
,
L.
Yu
, and
M. D.
Ediger
,
J. Phys. Chem. B
124
(
12
),
2505
2513
(
2020
).
33.
K.
Bagchi
,
N. E.
Jackson
,
A.
Gujral
,
C.
Huang
,
M. F.
Toney
,
L.
Yu
,
J. J.
de Pablo
, and
M. D.
Ediger
,
J. Phys. Chem. Lett.
10
(
2
),
164
170
(
2019
).
34.
J. J.
Hermans
,
P. H.
Hermans
,
D.
Vermaas
, and
A.
Weidinger
,
Recl. Trav. Chim. Pays-Bas
65
(
6
),
427
447
(
1946
).
35.
A.
Gujral
,
K. A.
O’Hara
,
M. F.
Toney
,
M. L.
Chabinyc
, and
M. D.
Ediger
,
Chem. Mater.
27
(
9
),
3341
3348
(
2015
).
36.
K. R.
Whitaker
,
M.
Tylinski
,
M.
Ahrenberg
,
C.
Schick
, and
M. D.
Ediger
,
J. Chem. Phys.
143
(
8
),
084511
(
2015
).
37.
S. S.
Dalal
,
A.
Sepúlveda
,
G. K.
Pribil
,
Z.
Fakhraai
, and
M. D.
Ediger
,
J. Chem. Phys.
136
(
20
),
204501
(
2012
).
38.
T.
Liu
,
K.
Cheng
,
E.
Salami-Ranjbaran
,
F.
Gao
,
C.
Li
,
X.
Tong
,
Y.-C.
Lin
,
Y.
Zhang
,
W.
Zhang
,
L.
Klinge
,
P. J.
Walsh
, and
Z.
Fakhraai
,
J. Chem. Phys.
143
(
8
),
084506
(
2015
).
39.
S. F.
Swallen
,
K.
Windsor
,
R. J.
McMahon
,
M. D.
Ediger
, and
T. E.
Mates
,
J. Phys. Chem. B
114
(
8
),
2635
2643
(
2010
).
40.
E.
Flenner
,
L.
Berthier
,
P.
Charbonneau
, and
C. J.
Fullerton
,
Phys. Rev. Lett.
123
(
17
),
175501
(
2019
).
41.
C.
Rodríguez-Tinoco
,
M.
Gonzalez-Silveira
,
J.
Ràfols-Ribé
,
A.
Vila-Costa
,
J. C.
Martinez-Garcia
, and
J.
Rodríguez-Viejo
,
Phys. Rev. Lett.
123
(
15
),
155501
(
2019
).
42.
K.
Bagchi
,
A.
Gujral
,
M. F.
Toney
, and
M. D.
Ediger
,
Soft Matter
15
(
38
),
7590
7595
(
2019
).
43.
L.
Yu
,
Adv. Drug Delivery Rev.
100
,
3
9
(
2016
).
44.
Y.
Esaki
,
T.
Komino
,
T.
Matsushima
, and
C.
Adachi
,
J. Phys. Chem. Lett.
8
(
23
),
5891
5897
(
2017
).
45.
Y.
Li
,
W.
Zhang
,
C.
Bishop
,
C.
Huang
,
M. D.
Ediger
, and
L.
Yu
,
Soft Matter
16
(
21
),
5062
5070
(
2020
).
46.
Y.
Chen
,
M.
Zhu
,
A.
Laventure
,
O.
Lebel
,
M. D.
Ediger
, and
L.
Yu
,
J. Phys. Chem. B
121
(
29
),
7221
7227
(
2017
).
47.
S.
Samanta
,
G.
Huang
,
G.
Gao
,
Y.
Zhang
,
A.
Zhang
,
S.
Wolf
,
C. N.
Woods
,
Y.
Jin
,
P. J.
Walsh
, and
Z.
Fakhraai
,
J. Phys. Chem. B
123
(
18
),
4108
4117
(
2019
).

Supplementary Material

You do not currently have access to this content.