Clathrate hydrates, or cages comprised solely of water molecules, have long been investigated as a clean storage facility for hydrogen molecules. A breakthrough occurred when hydrogen molecules were experimentally placed within a structure-II clathrate hydrate, which sparked much interest to determine their feasibility for energy storage [Mao et al., Science 297, 2247–2249 (2002)]. We use Path Integral Molecular Dynamics (PIMD) and Langevin equation Path Integral Ground State (LePIGS) for finite temperature and zero-temperature studies, respectively, to determine parahydrogen occupancy properties in the small dodecahedral (512) and large hexakaidecahedral (51264) sized cages that comprise the structure-II unit cell. We look at energetic and structural properties of small clusters of hydrogen, treated as point-like particles, confined within each of the different sized clathrates, and treated as rigid, to determine energetic and structural properties in the zero-temperature limit. Our predicted hydrogen occupancy within these two cage sizes is consistent with previous literature values. We then calculate the energies as a function of temperature and merge the low temperature results calculated using finite temperature PIMD with the zero-temperature results using LePIGS, demonstrating that the two methods are compatible.

1.
United States Department of Energy Office of Energy Efficiency and Renewable Energy Guidelines for Hydrogen Storage, available at http://energy.gov/eere/fuelcells/hydrogen-storage.
2.
W. L.
Mao
,
H.-k.
Mao
,
A. F.
Goncharov
,
V. V.
Struzhkin
,
Q.
Guo
,
J.
Hu
,
J.
Shu
,
R. J.
Hemley
,
M.
Somayazulu
, and
Y.
Zhao
, “
Hydrogen clusters in clathrate hydrate
,”
Science
297
,
2247
2249
(
2002
).
3.
V. V.
Struzhkin
,
B.
Militzer
,
W. L.
Mao
,
H.-k.
Mao
, and
R. J.
Hemley
, “
Hydrogen storage in molecular clathrates
,”
Chem. Rev.
107
,
4133
4151
(
2007
).
4.
H. P.
Veluswamy
,
R.
Kumar
, and
P.
Linga
, “
Hydrogen storage in clathrate hydrates: Current state of the art and future directions
,”
Appl. Energy
122
,
112
132
(
2014
).
5.
T. A.
Strobel
,
K. C.
Hester
,
C. A.
Koh
,
A. K.
Sum
, and
E. D.
Sloan
, Jr.
, “
Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage
,”
Chem. Phys. Lett.
478
,
97
109
(
2009
).
6.
S.
Alavi
and
J. A.
Ripmeester
, “
Simulations of hydrogen gas in clathrate hydrates
,”
Mol. Simul.
43
,
808
820
(
2017
).
7.
Y. A.
Dyadin
,
E. G.
Larionov
,
A. Y.
Manakov
,
F. V.
Zhurko
,
E. Y.
Aladko
,
T. V.
Mikina
, and
V. Y.
Komarov
, “
Clathrate hydrates of hydrogen and neon
,”
Mendeleev Commun.
9
,
209
210
(
1999
).
8.
Y. A.
Dyadin
,
É. G.
Larionov
,
E. Y.
Aladko
,
A. Y.
Manakov
,
F. V.
Zhurko
,
T. V.
Mikina
,
V. Y.
Komarov
, and
E. V.
Grachev
, “
Clathrate formation in water-noble gas (hydrogen) systems at high pressures
,”
J. Struct. Chem.
40
,
790
795
(
1999
).
9.
K. A.
Lokshin
,
Y.
Zhao
,
D.
He
,
W. L.
Mao
,
H.-K.
Mao
,
R. J.
Hemley
,
M. V.
Lobanov
, and
M.
Greenblatt
, “
Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction
,”
Phys. Rev. Lett.
93
,
125503
(
2004
).
10.
D.
Colognesi
,
M.
Celli
,
L.
Ulivi
,
M.
Xu
, and
Z.
Bačić
, “
Neutron scattering measurements and computation of the quantum dynamics of hydrogen molecules trapped in the small and large cages of clathrate hydrates
,”
J. Phys. Chem. A
117
,
7314
7326
(
2013
).
11.
T. A.
Strobel
,
C. A.
Koh
, and
E. D.
Sloan
, “
Water cavities of sH clathrate hydrate stabilized by molecular hydrogen
,”
J. Phys. Chem. B
112
,
1885
1887
(
2008
).
12.
Á.
Martín
and
C. J.
Peters
, “
Hydrogen storage in sH clathrate hydrates: Thermodynamic model
,”
J. Phys. Chem. B
113
,
7558
7563
(
2009
).
13.
L. J.
Florusse
,
C. J.
Peters
,
J.
Schoonman
,
K. C.
Hester
,
C. A.
Koh
,
S. F.
Dec
,
K. N.
Marsh
, and
E. D.
Sloan
, “
Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate
,”
Science
306
,
469
471
(
2004
).
14.
J.
Liu
,
J.
Hou
,
J.
Xu
,
H.
Liu
,
G.
Chen
, and
J.
Zhang
, “
Ab initio study of the molecular hydrogen occupancy in pure H2 and binary H2-THF clathrate hydrates
,”
Int. J. Hydrogen Energy
42
,
17136
17143
(
2017
).
15.
A.
Giannasi
,
M.
Celli
,
L.
Ulivi
, and
M.
Zoppi
, “
Low temperature Raman spectra of hydrogen in simple and binary clathrate hydrates
,”
J. Chem. Phys.
129
,
084705
(
2008
).
16.
S.
Patchkovskii
and
J. S.
Tse
, “
Thermodynamic stability of hydrogen clathrates
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
14645
14650
(
2003
).
17.
S.
Alavi
,
J. A.
Ripmeester
, and
D. D.
Klug
, “
Molecular-dynamics study of structure II hydrogen clathrates
,”
J. Chem. Phys.
123
,
024507
(
2005
).
18.
M.
Xu
,
Y. S.
Elmatad
,
F.
Sebastianelli
,
J. W.
Moskowitz
, and
Z.
Bačić
, “
Hydrogen molecule in the small dodecahedral cage of a clathrate hydrate: Quantum five-dimensional calculations of the coupled translation–rotation eigenstates
,”
J. Phys. Chem. B
110
,
24806
24811
(
2006
).
19.
F.
Sebastianelli
,
M.
Xu
,
Y. S.
Elmatad
,
J. W.
Moskowitz
, and
Z.
Bačić
, “
Hydrogen molecules in the small dodecahedral cage of a clathrate hydrate: Quantum translation–rotation dynamics of the confined molecules
,”
J. Phys. Chem. C
111
,
2497
2504
(
2007
).
20.
F.
Sebastianelli
,
M.
Xu
,
D. K.
Kanan
, and
Z.
Bačić
, “
One and two hydrogen molecules in the large cage of the structure II clathrate hydrate: Quantum translation–rotation dynamics close to the cage wall
,”
J. Phys. Chem. A
111
,
6115
6121
(
2007
).
21.
M.
Xu
,
F.
Sebastianelli
, and
Z.
Bačić
, “
Hydrogen molecule in the small dodecahedral cage of a clathrate hydrate: Quantum translation–rotation dynamics at higher excitation energies
,”
J. Phys. Chem. A
111
,
12763
12771
(
2007
).
22.
M.
Xu
,
F.
Sebastianelli
, and
Z.
Bačić
, “
Quantum dynamics of H2, D2, and HD in the small dodecahedral cage of clathrate hydrate: Evaluating H2-water nanocage interaction potentials by comparison of theory with inelastic neutron scattering experiments
,”
J. Chem. Phys.
128
,
244715
(
2008
).
23.
F.
Sebastianelli
,
M.
Xu
, and
Z.
Bačić
, “
Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures
,”
J. Chem. Phys.
129
,
244706
(
2008
).
24.
M.
Xu
,
F.
Sebastianelli
, and
Z.
Bačić
, “
Coupled translation–rotation eigenstates of H2, HD, and D2 in the large cage of structure II clathrate hydrate: Comparison with the small cage and rotational Raman spectroscopy
,”
J. Phys. Chem. A
113
,
7601
7609
(
2009
).
25.
A.
Witt
,
F.
Sebastianelli
,
M. E.
Tuckerman
, and
Z.
Bačić
, “
Path integral molecular dynamics study of small H2 clusters in the large cage of structure II clathrate hydrate: Temperature dependence of quantum spatial distributions
,”
J. Phys. Chem. C
114
,
20775
20782
(
2010
).
26.
M.
Xu
,
L.
Ulivi
,
M.
Celli
,
D.
Colognesi
, and
Z.
Bačić
, “
Quantum calculation of inelastic neutron scattering spectra of a hydrogen molecule inside a nanoscale cavity based on rigorous treatment of the coupled translation-rotation dynamics
,”
Phys. Rev. B
83
,
241403
(
2011
).
27.
M.
Xu
and
Z.
Bačić
, “
Inelastic neutron scattering spectra of a hydrogen molecule in a nanocavity: Methodology for quantum calculations incorporating the coupled five-dimensional translation-rotation eigenstates
,”
Phys. Rev. B
84
,
195445
(
2011
).
28.
M. P.
Hodges
,
R. J.
Wheatley
,
G. K.
Schenter
, and
A. H.
Harvey
, “
Intermolecular potential and second virial coefficient of the water–hydrogen complex
,”
J. Chem. Phys.
120
,
710
720
(
2004
).
29.
P.
Diep
and
J. K.
Johnson
, “
An accurate H2–H2 interaction potential from first principles
,”
J. Chem. Phys.
112
,
4465
4473
(
2000
).
30.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
31.
P. M.
Felker
,
D.
Lauvergnat
,
Y.
Scribano
,
D. M.
Benoit
, and
Z.
Bačić
, “
Intramolecular stretching vibrational states and frequency shifts of (H2)2 confined inside the large cage of clathrate hydrate from an eight-dimensional quantum treatment using small basis sets
,”
J. Chem. Phys.
151
,
124311
(
2019
).
32.
D.
Lauvergnat
,
P.
Felker
,
Y.
Scribano
,
D. M.
Benoit
, and
Z.
Bačić
, “
H2, HD, and D2 in the small cage of structure II clathrate hydrate: Vibrational frequency shifts from fully coupled quantum six-dimensional calculations of the vibration-translation-rotation eigenstates
,”
J. Chem. Phys.
150
,
154303
(
2019
).
33.
D. M.
Benoit
,
D.
Lauvergnat
, and
Y.
Scribano
, “
Does cage quantum delocalisation influence the translation–rotational bound states of molecular hydrogen in clathrate hydrate?
,”
Faraday Discuss.
212
,
533
546
(
2018
).
34.
R.
Feynman
and
A.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
1965
).
35.
S. A.
Chin
, “
Symplectic integrators from composite operator factorizations
,”
Phys. Lett. A
226
,
344
348
(
1997
).
36.
H. F.
Trotter
, “
On the product of semi-groups of operators
,”
Proc. Am. Math. Soc.
10
,
545
551
(
1959
).
37.
K. E.
Schmidt
and
M. A.
Lee
, “
High-accuracy Trotter-formula method for path integrals
,”
Phys. Rev. E
51
,
5495
(
1995
).
38.
A.
Sarsa
,
K. E.
Schmidt
, and
W. R.
Magro
, “
A path integral ground state method
,”
J. Chem. Phys.
113
,
1366
1371
(
2000
).
39.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
, “
Efficient stochastic thermostatting of path integral molecular dynamics
,”
J. Chem. Phys.
133
,
124104
(
2010
).
40.
K.
Hinsen
, “
The molecular modeling toolkit: A new approach to molecular simulations
,”
J. Comput. Chem.
21
,
79
85
(
2000
).
41.
C.
Ing
,
K.
Hinsen
,
J.
Yang
,
T.
Zeng
,
H.
Li
, and
P.-N.
Roy
, “
A path-integral Langevin equation treatment of low-temperature doped helium clusters
,”
J. Chem. Phys.
136
,
224309
(
2012
).
42.
S.
Constable
,
M.
Schmidt
,
C.
Ing
,
T.
Zeng
, and
P.-N.
Roy
, “
Langevin equation path integral ground state
,”
J. Phys. Chem. A
117
,
7461
7467
(
2013
).
43.
M.
Schmidt
,
S.
Constable
,
C.
Ing
, and
P.-N.
Roy
, “
Inclusion of trial functions in the Langevin equation path integral ground state method: Application to parahydrogen clusters and their isotopologues
,”
J. Chem. Phys.
140
,
234101
(
2014
).
44.
N.
Faruk
,
M.
Schmidt
,
H.
Li
,
R. J.
Le Roy
, and
P. N.
Roy
, “
First-principles prediction of the Raman shifts in parahydrogen clusters
,”
J. Chem. Phys.
141
,
014310
(
2014
).
45.
M.
Schmidt
,
J. M.
Fernández
,
N.
Faruk
,
M.
Nooijen
,
R. J.
Le Roy
,
J. H.
Morilla
,
G.
Tejeda
,
S.
Montero
, and
P.-N.
Roy
, “
Raman vibrational shifts of small clusters of hydrogen isotopologues
,”
J. Phys. Chem. A
119
,
12551
12561
(
2015
).
46.
M.
Schmidt
and
P.-N.
Roy
, “
Path integral molecular dynamic simulation of flexible molecular systems in their ground state: Application to the water dimer
,”
J. Chem. Phys.
148
,
124116
(
2018
).
47.
U.
Buck
,
F.
Huisken
,
A.
Kohlhase
,
D.
Otten
, and
J.
Schaefer
, “
State resolved rotational excitation in D2+H2 collisions
,”
J. Chem. Phys.
78
,
4439
4450
(
1983
).
48.
J. E.
Cuervo
and
P.-N.
Roy
, “
Path integral ground state study of finite-size systems: Application to small (parahydrogen)N (N = 2–20) clusters
,”
J. Chem. Phys.
125
,
124314
(
2006
).
49.
J. E.
Cuervo
and
P.-N.
Roy
, “
On the solid- and liquidlike nature of quantum clusters in their ground state
,”
J. Chem. Phys.
128
,
224509
(
2008
).
50.
R.
Guardiola
and
J.
Navarro
, “
A diffusion Monte Carlo study of small para-hydrogen clusters
,”
Open Phys.
6
,
33
37
(
2008
).
51.
T.
Zeng
,
H.
Li
,
R. J.
Le Roy
, and
P.-N.
Roy
, “
‘Adiabatic-hindered-rotor’ treatment of the parahydrogen-water complex
,”
J. Chem. Phys.
135
,
094304
(
2011
).
52.
P.
Valiron
,
M.
Wernli
,
A.
Faure
,
L.
Wiesenfeld
,
C.
Rist
,
S.
Kedžuch
, and
J.
Noga
, “
R12-calibrated H2O–H2 interaction: Full dimensional and vibrationally averaged potential energy surfaces
,”
J. Chem. Phys.
129
,
134306
(
2008
).
53.
S. F.
Dec
, “
Clathrate hydrate formation: Dependence on aqueous hydration number
,”
J. Phys. Chem. C
113
,
12355
12361
(
2009
).
54.
G.
Mazzola
and
M.
Troyer
, “
Accelerated nuclear quantum effects sampling with open path integrals
,” arXiv:1608.01262 (
2016
).
55.
K. R.
Ramya
and
A.
Venkatnathan
, “
Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory
,”
J. Chem. Phys.
138
,
124305
(
2013
).
56.
Z.
Futera
,
M.
Celli
,
L.
del Rosso
,
C. J.
Burnham
,
L.
Ulivi
, and
N. J.
English
, “
Vibrational modes of hydrogen hydrates: A first-principles molecular dynamics and Raman spectra study
,”
J. Phys. Chem. C
121
,
3690
3696
(
2017
).
57.
N.
Plattner
and
M.
Meuwly
, “
The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates
,”
J. Chem. Phys.
140
,
024311
(
2014
).
58.
A.
Powers
,
Y.
Scribano
,
D.
Lauvergnat
,
E.
Mebe
,
D. M.
Benoit
, and
Z.
Bačić
, “
The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates
,”
J. Chem. Phys.
148
,
144304
(
2018
).
59.
T. A.
Strobel
,
E. D.
Sloan
, and
C. A.
Koh
, “
Raman spectroscopic studies of hydrogen clathrate hydrates
,”
J. Chem. Phys.
130
,
014506
(
2009
).
60.
R. J.
Hinde
, “
A six-dimensional H2–H2 potential energy surface for bound state spectroscopy
,”
J. Chem. Phys.
128
,
154308
(
2008
).
61.
A.
Ibrahim
and
P.-N.
Roy
, “
Three-body potential energy surface for parahydrogen
,”
J. Chem. Phys.
(submitted) (
2021
).
62.
T.
Sahoo
,
T.
Serwatka
, and
P.-N.
Roy
, “
A path integral ground state approach for asymmetric top rotors with nuclear spin symmetry: Application to water chains
,”
J. Chem. Phys.
154
,
244305
(
2021
).
63.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
64.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Development of a first principles water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters
,”
J. Chem. Theory Comput.
10
,
1599
1607
(
2014
).
65.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
Development of a ‘first-principles’ water potential with flexible monomers. III. Liquid phase properties
,”
J. Chem. Theory Comput.
10
,
2906
2910
(
2014
).
66.
J. D.
Mallory
,
S. E.
Brown
, and
V. A.
Mandelshtam
, “
Assessing the performance of the diffusion Monte Carlo method as applied to the water monomer, dimer, and hexamer
,”
J. Phys. Chem. A
119
,
6504
6515
(
2015
).
67.
J. D.
Mallory
and
V. A.
Mandelshtam
, “
Diffusion Monte Carlo studies of MB-pol (H2O)2–6 and (D2O)2–6 clusters: Structures and binding energies
,”
J. Chem. Phys.
145
,
064308
(
2016
).
68.
T.
Sahoo
,
D.
Iouchtchenko
,
C.
Herdman
, and
P.-N.
Roy
, “
A path integral ground state replica trick approach for the computation of entanglement entropy of dipolar linear rotors
,”
J. Chem. Phys.
152
,
184113
(
2020
).
You do not currently have access to this content.