Symmetry considerations are at the core of the major frameworks used to provide an effective mathematical representation of atomic configurations that is then used in machine-learning models to predict the properties associated with each structure. In most cases, the models rely on a description of atom-centered environments and are suitable to learn atomic properties or global observables that can be decomposed into atomic contributions. Many quantities that are relevant for quantum mechanical calculations, however—most notably the single-particle Hamiltonian matrix when written in an atomic orbital basis—are not associated with a single center, but with two (or more) atoms in the structure. We discuss a family of structural descriptors that generalize the very successful atom-centered density correlation features to the N-center case and show, in particular, how this construction can be applied to efficiently learn the matrix elements of the (effective) single-particle Hamiltonian written in an atom-centered orbital basis. These N-center features are fully equivariant—not only in terms of translations and rotations but also in terms of permutations of the indices associated with the atoms—and are suitable to construct symmetry-adapted machine-learning models of new classes of properties of molecules and materials.

1.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
2.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
3.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
4.
V. L.
Deringer
,
A. P.
Bartók
,
N.
Bernstein
,
D. M.
Wilkins
,
M.
Ceriotti
, and
G.
Csányi
,
Chem. Rev.
121
,
10073
(
2021
).
5.
J.
Behler
,
Chem. Rev.
121
,
10037
(
2021
).
6.
A.
Bartók
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. B
87
,
184115
(
2013
).
7.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
8.
A. V.
Shapeev
,
Multiscale Model. Simul.
14
,
1153
(
2016
).
9.
G.
Ferré
,
T.
Haut
, and
K.
Barros
,
J. Chem. Phys.
146
,
114107
(
2017
).
10.
M.
Eickenberg
,
G.
Exarchakis
,
M.
Hirn
, and
S.
Mallat
, in
Advance Neural Information Processing Systems 2017-Decem
(
Curran Associates, Inc.
,
2017
), p.
6541
.
11.
A.
Glielmo
,
C.
Zeni
, and
A.
De Vita
,
Phys. Rev. B
97
,
184307
(
2018
).
12.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
Von Lilienfeld
,
J. Chem. Phys.
148
,
241717
(
2018
).
13.
M. J.
Willatt
,
F.
Musil
, and
M.
Ceriotti
,
J. Chem. Phys.
150
,
154110
(
2019
).
14.
R.
Drautz
,
Phys. Rev. B
102
,
024104
(
2020
).
15.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
11635
(
2005
).
16.
D. M.
Grant
and
R. K.
Harris
,
Encyclopedia of Nuclear Magnetic Resonance
(
John Wiley & Sons
,
Chichester; New York; Brisbane
,
1996
).
17.
C. J.
Pickard
and
F.
Mauri
,
Phys. Rev. B
63
,
245101
(
2001
).
18.
F. M.
Paruzzo
,
A.
Hofstetter
,
F.
Musil
,
S.
De
,
M.
Ceriotti
, and
L.
Emsley
,
Nat. Commun.
9
,
4501
(
2018
).
19.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
20.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Rev. Lett.
120
,
036002
(
2018
).
21.
B.
Anderson
,
T. S.
Hy
, and
R.
Kondor
, in
NeurIPS
(
Curran Associates, Inc.
,
2019
), p.
10
.
22.
O. T.
Unke
and
M.
Meuwly
,
J. Chem. Theory Comput.
15
,
3678
(
2019
).
23.
M.
Veit
,
D. M.
Wilkins
,
Y.
Yang
,
R. A.
DiStasio
, and
M.
Ceriotti
,
J. Chem. Phys.
153
,
024113
(
2020
).
24.
L.
Zhang
,
M.
Chen
,
X.
Wu
,
H.
Wang
,
W.
E
, and
R.
Car
,
Phys. Rev. B
102
,
041121
(
2020
).
25.
D. M.
Wilkins
,
A.
Grisafi
,
Y.
Yang
,
K. U.
Lao
,
R. A.
DiStasio
, and
M.
Ceriotti
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
3401
(
2019
).
26.
A.
Grisafi
,
A.
Fabrizio
,
B.
Meyer
,
D. M.
Wilkins
,
C.
Corminboeuf
, and
M.
Ceriotti
,
ACS Cent. Sci.
5
,
57
(
2019
).
27.
A.
Fabrizio
,
K. R.
Briling
,
D. D.
Girardier
, and
C.
Corminboeuf
,
J. Chem. Phys.
153
,
204111
(
2020
).
28.
S.
Yue
,
M. C.
Muniz
,
M. F.
Calegari Andrade
,
L.
Zhang
,
R.
Car
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
154
,
034111
(
2021
).
29.
A.
Grisafi
,
J.
Nigam
, and
M.
Ceriotti
,
Chem. Sci.
12
,
2078
(
2021
).
30.
K. V. J.
Jose
,
N.
Artrith
, and
J.
Behler
,
J. Chem. Phys.
136
,
194111
(
2012
).
31.
S. A.
Joyce
,
J. R.
Yates
,
C. J.
Pickard
, and
F.
Mauri
,
J. Chem. Phys.
127
,
204107
(
2007
).
32.
A. P.
Sutton
,
M. W.
Finnis
,
D. G.
Pettifor
, and
Y.
Ohta
,
J. Phys. C: Solid State Phys.
21
,
35
(
1988
).
33.
J.
Westermayr
and
R. J.
Maurer
,
Chem. Sci.
12
,
10755
(
2021
).
34.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
14
,
4772
(
2018
).
35.
Z.
Qiao
,
M.
Welborn
,
A.
Anandkumar
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Phys.
153
,
124111
(
2020
).
36.
A.
Fabrizio
,
K. R.
Briling
, and
C.
Corminboeuf
, arXiv:2110.13037 (
2021
).
37.
G.
Hegde
and
R. C.
Bowen
,
Sci. Rep.
7
,
42669
(
2017
).
38.
K. T.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R. J.
Maurer
,
Nat. Commun.
10
,
5024
(
2019
).
39.
O. T.
Unke
,
M.
Bogojeski
,
M.
Gastegger
,
M.
Geiger
,
T.
Smidt
, and
K.-R.
Müller
, arXiv:2106.02347 (
2021
).
40.
M. J.
Willatt
,
F.
Musil
, and
M.
Ceriotti
,
Phys. Chem. Chem. Phys.
20
,
29661
(
2018
).
41.
F.
Musil
,
A.
Grisafi
,
A. P.
Bartók
,
C.
Ortner
,
G.
Csányi
, and
M.
Ceriotti
,
Chem. Rev.
121
,
9759
(
2021
).
42.
J.
Nigam
,
S.
Pozdnyakov
, and
M.
Ceriotti
,
J. Chem. Phys.
153
,
121101
(
2020
).
43.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
44.
A.
Goscinski
,
F.
Musil
,
S.
Pozdnyakov
,
J.
Nigam
, and
M.
Ceriotti
,
J. Chem. Phys.
155
,
104106
(
2021
).
45.

The coupling relations we write in this section and elsewhere are formally equivalent to the usual relationships that exist for complex-valued spherical harmonics, with the understanding that the CG coefficients need to be adapted accordingly.

46.
A.
Grisafi
,
D. M.
Wilkins
,
M. J.
Willatt
, and
M.
Ceriotti
, in
Machine Learning in Chemistry
, edited by
E. O.
Pyzer-Knapp
and
T.
Laino
(
American Chemical Society
,
Washington, DC
,
2019
), Vol. 1326, pp.
1
21
.
47.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
48.
E. P.
Wigner
,
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
(
Academic Press
,
New York
,
1959
).
49.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
2006
).
50.
H. A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London, Ser. A
161
,
220
(
1937
).
51.
H. A.
Fertig
and
W.
Kohn
,
Phys. Rev. A
62
,
052511
(
2000
).
52.
M.
Gastegger
,
A.
McSloy
,
M.
Luya
,
K. T.
Schütt
, and
R. J.
Maurer
,
J. Chem. Phys.
153
,
044123
(
2020
).
53.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
54.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
,
Rev. Mod. Phys.
84
,
1419
(
2012
).
55.
X.
Qian
,
J.
Li
,
L.
Qi
,
C.-Z.
Wang
,
T.-L.
Chan
,
Y.-X.
Yao
,
K.-M.
Ho
, and
S.
Yip
,
Phys. Rev. B
78
,
245112
(
2008
).
56.
O.
Schütt
and
J.
VandeVondele
,
J. Chem. Theory Comput.
14
,
4168
(
2018
).
57.
I.
Souza
,
N.
Marzari
, and
D.
Vanderbilt
,
Phys. Rev. B
65
,
035109
(
2001
).
58.
V.
Vitale
,
G.
Pizzi
,
A.
Marrazzo
,
J. R.
Yates
,
N.
Marzari
, and
A. A.
Mostofi
,
npj Comput. Mater.
6
,
66
(
2020
).
59.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
(
2018
). “
Symmetry-adapted machine learning for tensorial properties of atomistic systems
,” Dataset.
60.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O.
Anatole Von Lilienfeld
,
New J. Phys.
15
,
095003
(
2013
).
61.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
 et al,
J. Chem. Phys.
153
,
024109
(
2020
).
62.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
 et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
63.
J.
Nigam
and
M.
Ceriotti
(
2021
). “
Ncenter-reps library
,” Zenodo.
64.
J.
Nigam
,
M. J.
Willatt
, and
M.
Ceriotti
(
2021
). “
Equivariant representations for molecular hamiltonians
,” Dataset. https://archive.materialscloud.org/record/2021.217

Supplementary Material

You do not currently have access to this content.