We use a reactive Monte Carlo simulation method and the primitive model of electrolyte to study acid–base equilibrium that controls charge regulation in colloidal systems. The simulations are performed in a semi-grand canonical ensemble in which colloidal suspension is in contact with a reservoir of salt and strong acid. The interior of colloidal particles is modeled as a low dielectric medium, different from the surrounding water. The effective colloidal charge is calculated for different numbers of surface acidic groups, pH, salt concentrations, and types of electrolyte. In the case of potassium chloride, the titration curves are compared with the experimental measurements obtained using potentiometric titration. A good agreement is found between simulations and experiments. In the case of lithium chloride, the specific ionic adsorption is taken into account through the partial dehydration of lithium ion.

1.
D.
Prusty
,
R. J.
Nap
,
I.
Szleifer
, and
M.
Olvera de la Cruz
,
Soft Matter
16
,
8832
(
2020
).
2.
C.-Y.
Leung
,
L. C.
Palmer
,
S.
Kewalramani
,
B.
Qiao
,
S. I.
Stupp
,
M.
Olvera de la Cruz
, and
M. J.
Bedzyk
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
16309
(
2013
).
3.
L.
Javidpour
,
A.
Božič
,
A.
Naji
, and
R.
Podgornik
,
Soft Matter
17
,
4296
(
2021
).
4.
L.
Javidpour
,
A. L.
Božič
,
R.
Podgornik
, and
A.
Naji
,
Sci. Rep.
9
,
3884
(
2019
).
5.
L.
Fink
,
C.
Allolio
,
J.
Feitelson
,
C.
Tamburu
,
D.
Harries
, and
U.
Raviv
,
Langmuir
36
,
10715
(
2020
).
6.
A.
Kubincová
,
P. H.
Hünenberger
, and
M.
Krishnan
,
J. Chem. Phys.
152
,
104713
(
2020
).
7.
M.
Krishnan
,
J. Chem. Phys.
146
,
205101
(
2017
).
8.
M.
Krishnan
,
J. Chem. Phys.
138
,
114906
(
2013
).
9.
A.
Behjatian
,
M.
Bespalova
,
N.
Karedla
, and
M.
Krishnan
,
Phys. Rev. E
102
,
042607
(
2020
).
10.
B.
Ma
and
M.
Olvera de la Cruz
,
J. Phys. Chem. B
125
,
3015
(
2021
).
11.
C.
Gao
,
S.
Kewalramani
,
D. M.
Valencia
,
H.
Li
,
J. M.
McCourt
,
M.
Olvera de la Cruz
, and
M. J.
Bedzyk
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
22030
(
2019
).
12.
Y.
Avni
,
R.
Podgornik
, and
D.
Andelman
,
J. Chem. Phys.
153
,
024901
(
2020
).
13.
Y.
Avni
,
D.
Andelman
, and
R.
Podgornik
,
Curr. Opin. Electrochem.
13
,
70
(
2019
).
14.
R. M.
Adar
,
D.
Andelman
, and
H.
Diamant
,
Adv. Colloid Interface Sci.
247
,
198
(
2017
), part of the Special Issue: Dominique Langevin Festschrift: Four Decades Opening Gates in Colloid and Interface Science.
15.
H.
Shen
and
D. D.
Frey
,
J. Chromatogr. A
1079
,
92
(
2005
).
16.
H.-K.
Tsao
,
Langmuir
16
,
7200
(
2000
).
17.
H.
Löwen
,
A.
Esztermann
,
A.
Wysocki
,
E.
Allahyarov
,
R.
Messina
,
A.
Jusufi
,
N.
Hoffmann
,
D.
Gottwald
,
G.
Kahl
, and
M.
Konieczny
,
J. Phys.: Conf. Ser.
11
,
207
(
2005
).
18.
R.
Messina
,
C.
Holm
, and
K.
Kremer
,
J. Chem. Phys.
117
,
2947
(
2002
).
19.
R.
Messina
,
C.
Holm
, and
K.
Kremer
,
Comput. Phys. Commun.
147
,
282
(
2002
), part of the Special Issue: Proceedings of the Europhysics Conference on Computational Physics Computational Modeling and Simulation of Complex Systems.
20.
M.
Borkovec
,
B.
Jönsson
, and
G. J. M.
Koper
, “
Ionization processes and proton binding in polyprotic systems: Small molecules, proteins, interfaces, and polyelectrolytes
,” in
Surface and Colloid Science
, edited by
E.
Matijević
(
Springer
,
Boston
,
2001
), pp.
99
339
.
21.
C. F.
Narambuena
,
P. M.
Blanco
,
A.
Rodriguez
,
D. E.
Rodriguez
,
S.
Madurga
,
J. L.
Garcés
, and
F.
Mas
,
Polymer
212
,
123170
(
2021
).
22.
I.
Worms
,
D. F.
Simon
,
C. S.
Hassler
, and
K. J.
Wilkinson
,
Biochimie
88
,
1721
(
2006
).
23.
I. R.
Booth
,
Microbiol. Rev.
49
,
359
(
1985
).
24.
J.
Antelo
,
M.
Avena
,
S.
Fiol
,
R.
López
, and
F.
Arce
,
J. Colloid Interface Sci.
285
,
476
(
2005
).
25.
M.
Brigante
and
M.
Avena
,
Microporous Mesoporous Mater.
225
,
534
(
2016
).
26.
F.
Hammes
and
W.
Verstraete
,
Rev. Environ. Sci. Biotechnol.
1
,
3
(
2002
).
27.
A. A. R.
Teixeira
,
M.
Lund
, and
F. L.
Barroso da Silva
,
J. Chem. Theory Comput.
6
,
3259
(
2010
).
28.
A.
Kurkdjian
and
J.
Guern
,
Annu. Rev. Plant Physiol. Plant Mol. Biol.
40
,
271
(
1989
).
29.
A.
Accardi
and
C.
Miller
,
Nature
427
,
803
(
2004
).
30.
T. J.
Beveridge
,
Annu. Rev. Microbiol.
43
,
147
(
1989
).
31.
A.
van der Wal
,
W.
Norde
,
A. J. B.
Zehnder
, and
J.
Lyklema
,
Colloids Surf., B
9
,
81
(
1997
).
32.
H. T. M.
Heinrich
,
P. J.
Bremer
,
C. J.
Daughney
, and
A. J.
McQuillan
,
Langmuir
23
,
2731
(
2007
).
33.
B. C.
Pressman
,
Proc. Natl. Acad. Sci. U. S. A.
53
,
1076
(
1965
).
34.
M.
Lund
and
B.
Jönsson
,
Q. Rev. Biophys.
46
,
265
(
2013
).
35.
R.
Lunkad
,
A.
Murmiliuk
,
P.
Hebbeker
,
M.
Boublík
,
Z.
Tošner
,
M.
Štěpánek
, and
P.
Košovan
,
Mol. Syst. Des. Eng.
6
,
122
(
2021
).
36.
R.
Lunkad
,
A.
Murmiliuk
,
Z.
Tošner
,
M.
Štěpánek
, and
P.
Košovan
,
Polymers
13
,
214
(
2021
).
37.
M. F.
Perutz
,
Science
201
,
1187
(
1978
).
38.
B.
Svensson
,
B.
Jönsson
, and
C.
Woodward
,
Biophys. Chem.
38
,
179
(
1990
).
39.
C. E.
Woodward
and
B. R.
Svensson
,
J. Phys. Chem.
95
,
7471
(
1991
).
40.
M.
Lund
and
B.
Jönsson
,
Biochemistry
44
,
5722
(
2005
).
41.
E.
Dickinson
and
M. E.
Leser
,
Food Colloids: Self-Assembly and Material Science
(
Royal Society of Chemistry
,
2007
).
42.
F. L. B.
da Silva
and
B.
Jönsson
,
Soft Matter
5
,
2862
(
2009
).
43.
K.
Szuttor
,
F.
Weik
,
J.-N.
Grad
, and
C.
Holm
,
J. Chem. Phys.
154
,
054901
(
2021
).
44.
S. H.
Behrens
and
D. G.
Grier
,
J. Chem. Phys.
115
,
6716
(
2001
).
45.
M.
Lund
,
T.
Åkesson
, and
B.
Jönsson
,
Langmuir
21
,
8385
(
2005
).
46.
D.
Andelman
, in
Soft Condensed Matter Physics in Molecular and Cell Biology
, edited by
W. C.
Poon
and
D.
Andelman
(
Taylor & Francis
,
New York
,
2006
), Vol. 6, p.
96
.
47.
R.
Podgornik
,
J. Chem. Phys.
149
,
104701
(
2018
).
48.
S.
Madurga
,
C.
Rey-Castro
,
I.
Pastor
,
E.
Vilaseca
,
C.
David
,
J. L.
Garcés
,
J.
Puy
, and
F.
Mas
,
J. Chem. Phys.
135
,
184103
(
2011
).
49.
T.
Nishio
,
Biophys. Chem.
57
,
261
(
1996
).
50.
T.
Nishio
,
Biophys. Chem.
49
,
201
(
1994
).
51.
J. K.
Johnson
,
A. Z.
Panagiotopoulos
, and
K. E.
Gubbins
,
Mol. Phys.
81
,
717
(
1994
).
52.
J. P.
Valleau
and
L. K.
Cohen
,
J. Chem. Phys.
72
,
5935
(
1980
).
53.
J.
Landsgesell
,
P.
Hebbeker
,
O.
Rud
,
R.
Lunkad
,
P.
Košovan
, and
C.
Holm
,
Macromolecules
53
,
3007
(
2020
).
54.
F.
Grünewald
,
P. C. T.
Souza
,
H.
Abdizadeh
,
J.
Barnoud
,
A. H.
de Vries
, and
S. J.
Marrink
,
J. Chem. Phys.
153
,
024118
(
2020
).
55.
T.
Curk
and
E.
Luijten
,
Phys. Rev. Lett.
126
,
138003
(
2021
).
56.
M.
Stornes
,
P. M.
Blanco
, and
R. S.
Dias
,
Colloids Surf., A
628
,
127258
(
2021
).
57.
S.
Madurga
,
J. L.
Garcés
,
E.
Companys
,
C.
Rey-Castro
,
J.
Salvador
,
J.
Galceran
,
E.
Vilaseca
,
J.
Puy
, and
F.
Mas
,
Theor. Chem. Acc.
123
,
127
(
2009
).
58.
H.
Wennerström
,
B.
Jönsson
, and
P.
Linse
,
J. Chem. Phys.
76
,
4665
(
1982
).
59.
E. R.
Nightingale
, Jr.
,
J. Phys. Chem.
63
,
1381
(
1959
).
60.
A.
Bakhshandeh
,
A. P.
Dos Santos
, and
Y.
Levin
,
Phys. Rev. Lett.
107
,
107801
(
2011
).
61.
A. P.
dos Santos
,
A.
Bakhshandeh
, and
Y.
Levin
,
J. Chem. Phys.
135
,
044124
(
2011
).
62.
A.
Bakhshandeh
,
Chem. Phys.
513
,
195
(
2018
).
63.
W. T.
Norris
,
IEE Proc.: Sci., Meas. Technol.
142
,
142
(
1995
).
64.
I. V.
Lindell
,
Am. J. Phys.
61
,
39
(
1993
).
65.
S. A.
Barr
and
A. Z.
Panagiotopoulos
,
Phys. Rev. E
86
,
016703
(
2012
).
66.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
67.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
53
,
600
(
1970
).
68.
D. J.
Adams
,
Mol. Phys.
28
,
1241
(
1974
).
69.
J. C. d. S. L.
Maciel
,
C. R. A.
Abreu
, and
F. W.
Tavares
,
Braz. J. Chem. Eng.
35
,
277
(
2018
).
70.
J. S.
Høye
and
E.
Lomba
,
J. Chem. Phys.
88
,
5790
(
1988
).
71.
C.-H.
Ho
,
H.-K.
Tsao
, and
Y.-J.
Sheng
,
J. Chem. Phys.
119
,
2369
(
2003
).
72.
Y.
Levin
and
M. E.
Fisher
,
Physica A
225
,
164
(
1996
).
73.
E.
Waisman
and
J. L.
Lebowitz
,
J. Chem. Phys.
56
,
3086
(
1972
).
74.
E.
Waisman
and
J. L.
Lebowitz
,
J. Chem. Phys.
56
,
3093
(
1972
).
75.
L.
Blum
,
Mol. Phys.
30
,
1529
(
1975
).
76.
S. H.
Behrens
,
D. I.
Christl
,
R.
Emmerzael
,
P.
Schurtenberger
, and
M.
Borkovec
,
Langmuir
16
,
2566
(
2000
).
77.
J.
Buffle
and
R. A.
Chalmers
,
Complexation Reactions in Aquatic Systems
(
John Wiley & Sons, Inc.
,
New York
,
1988
).
78.
E. D.
Cera
,
Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules
(
Cambridge University Press
,
1995
).
79.
J.
Lluís Garcés
,
F.
Mas
,
J.
Puy
,
J.
Galceran
, and
J.
Salvador
,
J. Chem. Soc., Faraday Trans.
94
,
2783
(
1998
).
80.
A.
Bakhshandeh
,
D.
Frydel
,
A.
Diehl
, and
Y.
Levin
,
Phys. Rev. Lett.
123
,
208004
(
2019
).
81.
A.
Bakhshandeh
,
D.
Frydel
, and
Y.
Levin
,
Phys. Chem. Chem. Phys.
22
,
24712
(
2020
).
82.
D. A.
Gomez
,
D.
Frydel
, and
Y.
Levin
,
J. Chem. Phys.
154
,
074706
(
2021
).
83.
Y.
Levin
,
Rep. Prog. Phys.
65
,
1577
(
2002
).
84.
J. S.
Uejio
,
C. P.
Schwartz
,
A. M.
Duffin
,
W. S.
Drisdell
,
R. C.
Cohen
, and
R. J.
Saykally
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
6809
(
2008
).
85.
A.
Sthoer
,
J.
Hladílková
,
M.
Lund
, and
E.
Tyrode
,
Phys. Chem. Chem. Phys.
21
,
11329
(
2019
).
86.
K. D.
Collins
,
Biophys. Chem.
167
,
43
(
2012
).
87.
J.
Iwahara
,
A.
Esadze
, and
L.
Zandarashvili
,
Biomolecules
5
,
2435
(
2015
).
88.
S.
Winstein
,
P. E.
Klinedinst
, Jr.
, and
E.
Clippinger
,
J. Am. Chem. Soc.
83
,
4986
(
1961
).
89.
M. T.
Record
, Jr.
,
T. M.
Lohman
, and
P. d.
Haseth
,
J. Mol. Biol.
107
,
145
(
1976
).
90.
J.-M.
,
S. V.
Rosokha
,
S. V.
Lindeman
,
I. S.
Neretin
, and
J. K.
Kochi
,
J. Am. Chem. Soc.
127
,
1797
(
2005
).
91.
J. M.
Masnovi
and
J. K.
Kochi
,
J. Am. Chem. Soc.
107
,
7880
(
1985
).
92.
T.
Yabe
and
J. K.
Kochi
,
J. Am. Chem. Soc.
114
,
4491
(
1992
).
93.
A.
Diehl
,
A. P.
Dos Santos
, and
Y.
Levin
,
J. Phys.: Condens. Matter
24
,
284115
(
2012
).
94.
W. M.
Latimer
,
K. S.
Pitzer
, and
C. M.
Slansky
,
Molecular Structure and Statistical Thermodynamics: Selected Papers of Kenneth S. Pitzer
(
World Scientific
,
1993
), pp.
485
489
.
You do not currently have access to this content.