Crystal structure prediction has been a subject of topical interest but remains a substantial challenge especially for complex structures as it deals with the global minimization of the extremely rugged high-dimensional potential energy surface. In this paper, a symmetry-orientated divide-and-conquer scheme was proposed to construct a symmetry tree graph, where the entire search space is decomposed into a finite number of symmetry dependent subspaces. An artificial intelligence-based symmetry selection strategy was subsequently devised to select the low-lying subspaces with high symmetries for global exploration and in-depth exploitation. Our approach can significantly simplify the problem of crystal structure prediction by avoiding exploration of the most complex P1 subspace on the entire search space and has the advantage of preserving the crystal symmetry during structure evolution, making it well suitable for predicting the complex crystal structures. The effectiveness of the method has been validated by successful prediction of the candidate structures of binary Lennard-Jones mixtures and the high-pressure phase of ice, containing more than 100 atoms in the simulation cell. The work therefore opens up an opportunity toward achieving the long-sought goal of crystal structure prediction of complex systems.

1.
J.
Nocedal
and
S.
Wright
,
Numerical Optimization
(
Springer Science & Business Media
,
2006
).
2.
S. T.
Call
,
D. Y.
Zubarev
, and
A. I.
Boldyrev
, “
Global minimum structure searches via particle swarm optimization
,”
J. Comput. Chem.
28
,
1177
1186
(
2007
).
3.
C. J.
Pickard
and
R. J.
Needs
, “
Ab initio random structure searching
,”
J. Phys.: Condens. Matter
23
,
053201
(
2011
).
4.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
2070
(
2012
).
5.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
6.
B.
Gao
,
P.
Gao
,
S.
Lu
,
J.
Lv
,
Y.
Wang
, and
Y.
Ma
, “
Interface structure prediction via CALYPSO method
,”
Sci. Bull.
64
,
301
309
(
2019
).
7.
Y.
Forman
and
M.
Cameron
, “
Modeling aggregation processes of Lennard–Jones particles via stochastic networks
,”
J. Stat. Phys.
168
,
408
433
(
2017
).
8.
A. R.
Oganov
, “
Crystal structure prediction: Reflections on present status and challenges
,”
Faraday Discuss.
211
,
643
660
(
2018
).
9.
Y.
Wang
and
Y.
Ma
, “
Perspective: Crystal structure prediction at high pressures
,”
J. Chem. Phys.
140
,
040901
(
2014
).
10.
F.
Peng
,
Y.
Sun
,
C. J.
Pickard
,
R. J.
Needs
,
Q.
Wu
, and
Y.
Ma
, “
Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity
,”
Phys. Rev. Lett.
119
,
107001
(
2017
).
11.
H.
Liu
,
I. I.
Naumov
,
R.
Hoffmann
,
N. W.
Ashcroft
, and
R. J.
Hemley
, “
Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6990
6995
(
2017
).
12.
S. P.
Brooks
and
B. J. T.
Morgan
, “
Optimization using simulated annealing
,”
Statistician
44
,
241
(
1995
).
13.
D. J.
Wales
and
J. P. K.
Doye
, “
Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms
,”
J. Phys. Chem. A
101
,
5111
5116
(
1997
).
14.
M.
Amsler
and
S.
Goedecker
, “
Crystal structure prediction using the minima hopping method
,”
J. Chem. Phys.
133
,
224104
(
2010
).
15.
R.
Martoňák
,
A.
Laio
, and
M.
Parrinello
, “
Predicting crystal structures: The Parrinello–Rahman method revisited
,”
Phys. Rev. Lett.
90
,
075503
(
2003
).
16.
S. M.
Woodley
,
P. D.
Battle
,
J. D.
Gale
, and
C. A.
Catlow
, “
The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation
,”
Phys. Chem. Chem. Phys.
1
,
2535
2542
(
1999
).
17.
A. R.
Oganov
and
C. W.
Glass
, “
Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
,”
J. Chem. Phys.
124
,
244704
(
2006
).
18.
N. L.
Abraham
and
M. I. J.
Probert
, “
A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction
,”
Phys. Rev. B
73
,
224104
(
2006
).
19.
G.
Trimarchi
and
A.
Zunger
, “
Global space-group optimization problem: Finding the stablest crystal structure without constraints
,”
Phys. Rev. B
75
,
104113
(
2007
).
20.
D. C.
Lonie
and
E.
Zurek
, “
XTALOPT version r7: An open-source evolutionary algorithm for crystal structure prediction
,”
Comput. Phys. Commun.
182
,
2305
2306
(
2011
).
21.
A. R.
Oganov
,
C. J.
Pickard
,
Q.
Zhu
, and
R. J.
Needs
, “
Structure prediction drives materials discovery
,”
Nat. Rev. Mater.
4
,
331
348
(
2019
).
22.
T. H.
Cormen
,
C. E.
Leiserson
,
R. L.
Rivest
, and
C.
Stein
,
Introduction to Algorithms
(
MIT Press
,
2009
).
23.
C. P.
Massen
and
J. P.
Doye
, “
Power-law distributions for the areas of the basins of attraction on a potential energy landscape
,”
Phys. Rev. E
75
,
037101
(
2007
).
24.
D. J.
Wales
, “
Symmetry, near-symmetry and energetics
,”
Chem. Phys. Lett.
285
,
330
336
(
1998
).
25.
A. O.
Lyakhov
,
A. R.
Oganov
,
H. T.
Stokes
, and
Q.
Zhu
, “
New developments in evolutionary structure prediction algorithm USPEX
,”
Comput. Phys. Commun.
184
,
1172
1182
(
2013
).
26.
C. E.
Mohn
,
S.
Stølen
, and
W.
Kob
, “
Predicting the structure of alloys using genetic algorithms
,”
Mater. Manuf. Processes
26
,
348
353
(
2011
).
27.
J.
Zhang
and
M.
Dolg
, “
ABCluster: The artificial bee colony algorithm for cluster global optimization
,”
Phys. Chem. Chem. Phys.
17
,
24173
24181
(
2015
).
28.
J.
Zhang
and
M.
Dolg
, “
Global optimization of clusters of rigid molecules using the artificial bee colony algorithm
,”
Phys. Chem. Chem. Phys.
18
,
3003
3010
(
2016
).
29.
O.
Yañez
,
R.
Báez-Grez
,
D.
Inostroza
,
W. A.
Rabanal-León
,
R.
Pino-Rios
,
J.
Garza
, and
W.
Tiznado
, “
AUTOMATON: A program that combines a probabilistic cellular automata and a genetic algorithm for global minimum search of clusters and molecules
,”
J. Chem. Theory Comput.
15
,
1463
1475
(
2018
).
30.
P.
Avery
and
E.
Zurek
, “
RandSpg: An open-source program for generating atomistic crystal structures with specific spacegroups
,”
Comput. Phys. Commun.
213
,
208
216
(
2017
).
31.
S.
Fredericks
,
K.
Parrish
,
D.
Sayre
, and
Q.
Zhu
, “
PyXtal: A python library for crystal structure generation and symmetry analysis
,”
Comput. Phys. Commun.
261
,
107810
(
2021
).
32.
L.
Zhu
,
M.
Amsler
,
T.
Fuhrer
,
B.
Schaefer
,
S.
Faraji
,
S.
Rostami
,
S. A.
Ghasemi
,
A.
Sadeghi
,
M.
Grauzinyte
,
C.
Wolverton
 et al., “
A fingerprint based metric for measuring similarities of crystalline structures
,”
J. Chem. Phys.
144
,
034203
(
2016
).
33.
Z.
Falls
,
P.
Avery
,
X.
Wang
,
K. P.
Hilleke
, and
E.
Zurek
, “
The XtalOpt evolutionary algorithm for crystal structure prediction
,”
J. Phys. Chem. C
125
,
1601
1620
(
2020
).
34.
A.
Demont
,
M. S.
Dyer
,
R.
Sayers
,
M. F.
Thomas
,
M.
Tsiamtsouri
,
H. N.
Niu
,
G. R.
Darling
,
A.
Daoud-Aladine
,
J. B.
Claridge
, and
M. J.
Rosseinsky
, “
Stabilization of a complex perovskite superstructure under ambient conditions: Influence of cation composition and ordering, and evaluation as an SOFC cathode
,”
Chem. Mater.
22
,
6598
6615
(
2010
).
35.
M. S.
Dyer
,
C.
Collins
,
D.
Hodgeman
,
P. A.
Chater
,
A.
Demont
,
S.
Romani
,
R.
Sayers
,
M. F.
Thomas
,
J. B.
Claridge
,
G. R.
Darling
, and
M. J.
Rosseinsky
, “
Computationally assisted identification of functional inorganic materials
,”
Science
340
,
847
852
(
2013
).
36.
T. F.
Middleton
,
J.
Hernández-Rojas
,
P. N.
Mortenson
, and
D. J.
Wales
, “
Crystals of binary Lennard-Jones solids
,”
Phys. Rev. B
64
,
184201
(
2001
).
37.
K.
Umemoto
and
R. M.
Wentzcovitch
, “
Theoretical study of the isostructural transformation in ice VIII
,”
Phys. Rev. B
71
,
012102
(
2005
).

Supplementary Material

You do not currently have access to this content.