This paper accounts for a general procedure of bonding analysis that is, expectedly, adequate to describe any type of interaction involving the noble-gas (Ng) atoms. Building on our recently proposed classification of the Ng–X bonds (X = binding partner) [New J. Chem. 44, 15536 (2020)], these contacts are first distinguished into three types, namely, A, B, or C, based on the topology of the electron energy density H(r) and on the shape of its plotted form. Bonds of type B or C are, then, further assigned as B-loose (Bl) or B-tight (Bt) and C-loose (Cl) or C-tight (Ct) depending on the sign that H(r) takes along the Ng–X bond path located from the topological analysis of ρ(r), particularly at around the bond critical point (BCP). Any bond of type A, Bl/Bt, or Cl/Ct is, finally, assayed in terms of contribution of covalency. This is accomplished by studying the maximum, minimum, and average value of H(r) over the volume enclosed by the low-density reduced density gradient (RDG) isosurface associated with the bond (typically, the RDG isosurface including the BCP) and the average ρ(r) over the same volume. The bond assignment is also corroborated by calculating the values of quantitative indices specifically defined for the various types of interactions (A, B, or C). The generality of our taken approach should encourage its wide application to the study of Ng compounds.

1.
D. S.
Brock
,
G. J.
Schrobilgen
, and
B.
Žemva
, in
Comprehensive Inorganic Chemistry II
, edited by
J.
Reedijk
and
K.
Poepplemeier
(
Elsevier
,
Oxford
,
2013
), Vol. 1, Chap. 5, p.
755
.
2.
J.
Haner
and
G. J.
Schrobilgen
,
Chem. Rev.
115
,
1255
(
2015
).
3.
J.
Lehmann
,
H. P. A.
Mercier
, and
G. J.
Schrobilgen
,
Coord. Chem. Rev.
233–234
,
1
(
2002
).
4.
W.
Grochala
,
Chem. Soc. Rev.
36
,
1632
(
2007
).
6.
L.
Khriachtchev
,
M.
Pettersson
,
N.
Runeberg
,
J.
Lundell
, and
M.
Räsänen
,
Nature
406
,
874
(
2000
).
7.
W.
Grochala
and
M.
Räsänen
, in
Physics and Chemistry at Low Temperatures
, edited by
L.
Khriachtchev
(
CRC Press
,
2011
), Chap. 13, p.
419
.
8.
X.
Dong
,
A. R.
Oganov
,
A. F.
Goncharov
,
E.
Stavrou
,
S.
Lobanov
,
G.
Saleh
,
G.-R.
Qian
,
Q.
Zhu
,
C.
Gatti
,
V. L.
Deringer
,
R.
Dronskowski
,
X.-F.
Zhou
,
V. B.
Prakapenka
,
Z.
Konôpková
,
I. A.
Popov
,
A. I.
Boldyrev
, and
H.-T.
Wang
,
Nat. Chem.
9
,
440
(
2017
).
10.
F.
Grandinetti
,
Eur. J. Mass Spectrom.
17
,
197
(
2011
).
11.
12.
F.
Nunzi
,
G.
Pannacci
,
F.
Tarantelli
,
L.
Belpassi
,
D.
Cappelletti
,
S.
Falcinelli
, and
F.
Pirani
,
Molecules
25
,
2367
(
2020
).
13.
F.
Grandinetti
, in
Noble Gas Chemistry, Structure, Bonding, and Gas-Phase Chemistry
(
Wiley VCH
,
Weinheim
,
2018
), Chap. 3, p.
55
.
14.
15.
J.
Andrés
,
L.
Gracia
,
P.
González-Navarrete
, and
V. S.
Safont
,
Comput. Theor. Chem.
1053
,
17
(
2015
).
16.
P. L. A.
Popelier
, in
The Chemical Bond II, Structure and Bonding
, edited by
D.
Mingos
(
Springer
,
Cham
,
2016
), Vol. 170, Chap. 2, p.
71
.
17.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
Oxford
,
1990
).
18.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
19.
B.
Silvi
and
A.
Savin
,
Nature
371
,
683
(
1994
).
20.
A.
Savin
,
B.
Silvi
, and
F.
Colonna
,
Can. J. Chem.
74
,
1088
(
1996
).
21.
E. R.
Johnson
,
S.
Keinan
,
P.
Mori-Sánchez
,
J.
Contreras-García
,
A. J.
Cohen
, and
W.
Yang
,
J. Am. Chem. Soc.
132
,
6498
(
2010
).
22.
C.
Narth
,
Z.
Maroun
,
R. A.
Boto
,
R.
Chaudret
,
M.-L.
Bonnet
,
J.-P.
Piquemal
, and
J.
Contreras-García
, in
Applications of Topological Methods in Molecular Chemistry
, edited by
R.
Chauvin
,
C.
Lepetit
,
B.
Silvi
, and
E.
Alikhani
(
Springer
,
Cham
,
2016
), p.
491
.
23.
W.
Koch
,
G.
Frenking
,
J.
Gauss
,
D.
Cremer
, and
J. R.
Collins
,
J. Am. Chem. Soc.
109
,
5917
(
1987
).
24.
G.
Frenking
and
D.
Cremer
,
Struct. Bonding
73
,
17
(
1990
).
25.
S.
Berski
,
Z.
Latajka
,
B.
Silvi
, and
J.
Lundell
,
J. Chem. Phys.
114
,
4349
(
2001
).
26.
J.
Lundell
,
S.
Berski
, and
Z.
Latajka
,
Chem. Phys. Lett.
371
,
295
(
2003
).
27.
D.
Manna
,
A.
Ghosh
, and
T. K.
Ghanty
,
Chem. - Eur. J.
21
,
8290
(
2015
).
28.
A.
Ghosh
and
T. K.
Ghanty
, BARC Newsletter, September-October 2021, p.
13
.
29.
S.
Pan
,
R.
Saha
, and
P. K.
Chattaraj
,
New J. Chem.
39
,
6778
(
2015
).
30.
S.
Pan
,
D.
Moreno
,
S.
Ghosh
,
P. K.
Chattaraj
, and
G.
Merino
,
J. Comput. Chem.
37
,
226
(
2016
).
31.
S.
Pan
,
R.
Saha
,
A.
Kumar
,
A.
Gupta
,
G.
Merino
, and
P. K.
Chattaraj
,
Int. J. Quantum Chem.
116
,
1016
(
2016
).
32.
R.
Saha
,
G.
Jana
,
S.
Pan
,
G.
Merino
, and
P. K.
Chattaraj
,
Molecules
24
,
2933
(
2019
).
33.
W.
Zou
,
D.
Nori-Shargh
, and
J. E.
Boggs
,
J. Phys. Chem. A
117
,
207
(
2013
);
[PubMed]
34.
D.
Ćoćić
,
R.
Puchta
, and
R.
van Eldik
,
J. Coord. Chem.
73
,
2602
(
2020
).
35.
F. M.
Carvalho
,
A. S.
Kiametis
,
A. L.
de Araújo Oliveira
,
F.
Pirani
, and
R.
Gargano
,
Spectrochim. Acta, Part A
246
,
119049
(
2021
).
36.
S.
Borocci
,
M.
Giordani
, and
F.
Grandinetti
,
J. Phys. Chem. A
119
,
6528
(
2015
).
37.
D.
Cremer
and
E.
Kraka
,
Angew. Chem., Int. Ed. Engl.
23
,
627
(
1984
).
38.
D.
Cremer
and
E.
Kraka
,
Croat. Chem. Acta
57
,
1259
(
1984
).
39.
G.
Saleh
,
C.
Gatti
, and
L.
Lo Presti
,
Comput. Theor. Chem.
1053
,
53
(
2015
).
40.
S.
Borocci
,
F.
Grandinetti
,
N.
Sanna
,
P.
Antoniotti
, and
F.
Nunzi
,
J. Comput. Chem.
40
,
2318
(
2019
).
41.
S.
Borocci
,
F.
Grandinetti
,
N.
Sanna
,
P.
Antoniotti
, and
F.
Nunzi
,
J. Comput. Chem.
41
,
1000
(
2020
).
42.
S.
Borocci
,
F.
Grandinetti
, and
N.
Sanna
,
Chem. Phys. Lett.
752
,
137532
(
2020
).
43.
S.
Borocci
,
F.
Grandinetti
, and
N.
Sanna
,
Molecules
26
,
1305
(
2021
).
44.
S.
Borocci
,
F.
Grandinetti
,
F.
Nunzi
, and
N.
Sanna
,
New J. Chem.
44
,
14536
(
2020
).
45.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
46.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
,
J. Chem. Inf. Model.
59
,
4814
(
2019
).
47.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
119
,
11113
(
2003
).
48.
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
Z.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2013
.
50.
H.
Bürger
,
R.
Kuna
,
S.
Ma
,
J.
Breidung
, and
W.
Thiel
,
J. Chem. Phys.
101
,
1
(
1994
).
51.
S.
Borocci
,
N.
Bronzolino
, and
F.
Grandinetti
,
Chem. Phys. Lett.
398
,
357
(
2004
).
52.
Z.
Liu
,
J.
He
,
Y.
Li
,
Y.
Bai
,
Q.
Lin
,
Y.
Guo
,
F.
Zhang
,
H.
Wu
, and
J.
Jia
,
New J. Chem.
45
,
1363
(
2021
).
53.
R. M.
Gomila
and
A.
Frontera
,
Front. Chem.
8
,
396
(
2020
).
54.
P.
Pyykkö
,
J. Phys. Chem. A
119
,
2326
(
2015
).
55.
E.
Espinosa
,
I.
Alkorta
,
J.
Elguero
, and
E.
Molins
,
J. Chem. Phys.
117
,
5529
(
2002
).
56.
A.
Bauzá
and
A.
Frontera
,
Angew. Chem., Int. Ed.
54
,
7340
(
2015
).
57.
A.
Bauzá
and
A.
Frontera
,
ChemPhysChem
16
,
3625
(
2015
).
58.
A.
Bauzá
and
A.
Frontera
,
Phys. Chem. Chem. Phys.
17
,
24748
(
2015
).
59.
A.
Bauzá
and
A.
Frontera
,
Coord. Chem. Rev.
404
,
213112
(
2020
).
61.
M. D.
Esrafili
,
S.
Asadollahi
, and
M.
Vakili
,
Int. J. Quantum Chem.
116
,
1254
(
2016
).
62.
M. D.
Esrafili
and
E.
Vessally
,
Chem. Phys. Lett.
662
,
80
(
2016
).
63.
M. D.
Esrafili
and
A.
Sadr-Mousavi
,
Chem. Phys. Lett.
698
,
1
(
2018
).
64.
M.
Yáñez
,
P.
Sanz
,
O.
,
I.
Alkorta
, and
J.
Elguero
,
J. Chem. Theor. Comput.
5
,
2763
(
2009
).
65.
66.
I.
Alkorta
,
J.
Elguero
, and
A.
Frontera
,
Crystals
10
,
180
(
2020
).
67.
M. M.
Montero-Campillo
,
O.
,
M.
Yáñez
,
I.
Alkorta
, and
J.
Elguero
,
Adv. Inorg. Chem.
73
,
73
(
2019
).
68.
K.
Eskandari
,
Comput. Theor. Chem.
1090
,
74
(
2016
).
69.
K.
Mykolayivna Lemishko
,
G.
Bistoni
,
L.
Belpassi
,
F.
Tarantelli
,
M.
Merced Montero-Campillo
, and
M.
Yáñez
, in
Applications of Topological Methods in Molecular Chemistry
, edited by
R.
Chauvin
,
C.
Lepetit
,
B.
Silvi
, and
E.
Alikhani
(
Springer
,
Cham
,
2016
), p.
461
.
70.
M.
Liu
,
L.
Yang
,
Q.
Li
,
W.
Li
,
J.
Cheng
,
B.
Xiao
, and
X.
Yu
,
J. Mol. Model.
22
,
192
(
2016
).
71.
A.
Bauzá
and
A.
Frontera
,
Chem. Eur. J.
23
,
5375
(
2017
).
72.
J. L.
Casals-Sainz
,
F.
Jiménez-Grávalos
,
A.
Costales
,
E.
Francisco
, and
Á. M.
Pendás
,
J. Phys. Chem. A
122
,
849
(
2018
).
73.
I.
Alkorta
and
A.
Legon
,
Inorganics
7
,
35
(
2019
).
74.
76.
T.
Clark
,
M.
Hennemann
,
J. S.
Murray
, and
P.
Politzer
,
J. Mol. Model.
13
,
291
(
2007
).
77.
T.
Clark
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
13
(
2013
).
78.
P.
Politzer
,
J. S.
Murray
, and
T.
Clark
,
Phys. Chem. Chem. Phys.
15
,
11178
(
2013
).
79.
M. H.
Kolar
and
P.
Hobza
,
Chem. Rev.
116
,
5155
(
2016
).
80.
J. S.
Murray
,
P.
Lane
,
T.
Clark
,
K. E.
Riley
, and
P.
Politzer
,
J. Mol. Model.
18
,
541
(
2012
).
81.
J. S.
Murray
and
P.
Politzer
,
Crystals
10
,
76
(
2020
).
82.
P.
Antoniotti
,
N.
Bronzolino
, and
F.
Grandinetti
,
J. Phys. Chem. A
107
,
2974
(
2003
).
83.
J.
Garcia
,
R.
Podeszwa
, and
K.
Szalewicz
,
J. Chem. Phys.
152
,
184109
(
2020
).
84.
R. M.
Gomila
and
A.
Frontera
,
Front. Chem.
8
,
395
(
2020
).

Supplementary Material

You do not currently have access to this content.