We theoretically demonstrate that the chemical reaction rate constant can be significantly suppressed by coupling molecular vibrations with an optical cavity, exhibiting both the collective coupling effect and the cavity frequency modification of the rate constant. When a reaction coordinate is strongly coupled to the solvent molecules, the reaction rate constant is reduced due to the dynamical caging effect. We demonstrate that collectively coupling the solvent to the cavity can further enhance this dynamical caging effect, leading to additional suppression of the chemical kinetics. This effect is further amplified when cavity loss is considered.

1.
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
H.
Hiura
,
C.
Genet
, and
T. W.
Ebbesen
, “
Multiple Rabi splittings under ultra-strong vibrational coupling
,”
Phys. Rev. Lett.
117
,
153601
(
2016
).
2.
A.
Shalabney
,
J.
George
,
J.
Hutchison
,
G.
Pupillo
,
C.
Genet
, and
T. W.
Ebbesen
, “
Coherent coupling of molecular resonators with a microcavity mode
,”
Nat. Commun.
6
,
5981
(
2015
).
3.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
4.
A.
Thomas
,
J.
George
,
A.
Shalabney
,
M.
Dryzhakov
,
S. J.
Varma
,
J.
Moran
,
T.
Chervy
,
X.
Zhong
,
E.
Devaux
,
C.
Genet
,
J. A.
Hutchison
, and
T. W.
Ebbesen
, “
Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field
,”
Angew. Chem.
128
,
11634
11638
(
2016
).
5.
A.
Thomas
,
A.
Jayachandran
,
L.
Lethuillier-Karl
,
R. M. A.
Vergauwe
,
K.
Nagarajan
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Ground state chemistry under vibrational strong coupling: Dependence of thermodynamic parameters on the Rabi splitting energy
,”
Nanophotonics
9
,
249
255
(
2020
).
6.
R. M. A.
Vergauwe
,
A.
Thomas
,
K.
Nagarajan
,
A.
Shalabney
,
J.
George
,
T.
Chervy
,
M.
Seidel
,
E.
Devaux
,
V.
Torbeev
, and
T. W.
Ebbesen
, “
Modification of enzyme activity by vibrational strong coupling of water
,”
Angew. Chem., Int. Ed.
58
,
15324
15328
(
2019
).
7.
K.
Hirai
,
R.
Takeda
,
J. A.
Hutchison
, and
H.
Uji‐i
, “
Modulation of Prins cyclization by vibrational strong coupling
,”
Angew. Chem., Int. Ed.
59
,
5332
5335
(
2020
).
8.
J.
Lather
,
P.
Bhatt
,
A.
Thomas
,
T. W.
Ebbesen
, and
J.
George
, “
Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules
,”
Angew. Chem., Int. Ed.
58
,
10635
10638
(
2019
).
9.
J.
Lather
,
A. N. K.
Thabassum
,
J.
Singh
, and
J.
George
, “
Cavity catalysis: Modifying linear free-energy relationship under cooperative vibrational strong coupling
,”
Chem. Sci.
(online
2021
).
10.
T. E.
Li
,
A.
Nitzan
, and
J. E.
Subotnik
, “
Collective vibrational strong coupling effects on molecular vibrational relaxation and energy transfer: Numerical insights via cavity molecular dynamics simulations
,”
Angew. Chem.
133
,
15661
15668
(
2021
).
11.
M.
Du
and
J.
Yuen-Zhou
, “
Can dark states explain vibropolaritonic chemistry?
,” arXiv:2104.07214 (
2021
).
12.
X.
Li
,
A.
Mandal
, and
P.
Huo
, “
Cavity frequency-dependent theory for vibrational polariton chemistry
,”
Nat. Commun.
12
,
1315
(
2021
).
13.
C.
Climent
and
J.
Feist
, “
On the SN2 reactions modified in vibrational strong coupling experiments: Reaction mechanisms and vibrational mode assignments
,”
Phys. Chem. Chem. Phys.
22
,
23545
23552
(
2020
).
14.
M.
Du
,
J. A.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
, “
Nonequilibrium effects of cavity leakage and vibrational dissipation in thermally-activated polariton chemistry
,”
J. Chem. Phys.
154
,
084108
(
2021
).
15.
T. E.
Li
,
A.
Nitzan
, and
J. E.
Subotnik
, “
On the origin of ground-state vacuum-field catalysis: Equilibrium consideration
,”
J. Chem. Phys.
152
,
234107
(
2020
).
16.
C.
Schafer
,
J.
Flick
,
E.
Ronca
,
P.
Narang
, and
A.
Rubio
, “
Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity
,” arXiv:2104.12429 (
2021
).
17.
P.-Y.
Yang
and
J.
Cao
, “
Quantum effects in chemical reactions under polaritonic vibrational strong coupling
,”
J. Phys. Chem. Lett.
12
,
9531
9538
(
2021
).
18.
D. S.
Wang
,
T.
Neuman
,
S. F.
Yelin
, and
J.
Flick
, “
Cavity-modified unimolecular dissociation reactions via intramolecular vibrational energy redistribution
,” arXiv:2109.06631 (
2021
).
19.
J. A.
Campos-Gonzalez-Angulo
and
J.
Yuen-Zhou
, “
Polaritonic normal modes in transition state theory
,”
J. Chem. Phys.
152
,
161101
(
2020
).
20.
X.
Li
,
A.
Mandal
, and
P.
Huo
, “
Theory of mode-selective chemistry through polaritonic vibrational strong coupling
,”
J. Phys. Chem. Lett.
12
,
6974
6982
(
2021
).
21.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity Casimir-Polder forces and their effects in ground-state chemical reactivity
,”
Phys. Rev. X
9
,
021057
(
2019
).
22.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
23.
H.
Hiura
,
A.
Shalabney
, and
J.
George
, “
A reaction kinetic model for vacuum-field catalysis based on vibrational light-matter coupling
,” chemRxiv:9275777.v1 (
2019
).
24.
E. A.
Power
and
S.
Zienau
, “
Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines
,”
Philos. Trans. R. Soc. London, Ser. A
251
,
427
454
(
1959
).
25.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
,
Photons and Atoms: Introduction to Quantum Electrodynamics
(
John Wiley & Sons, Inc.
,
Hoboken
,
1989
).
26.
V.
Rokaj
,
D. M.
Welakuh
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Light–matter interaction in the long-wavelength limit: No ground-state without dipole self-energy
,”
J. Phys. B: At., Mol. Opt. Phys.
51
,
034005
(
2018
).
27.
C.
Schäfer
,
M.
Ruggenthaler
,
V.
Rokaj
, and
A.
Rubio
, “
Relevance of the quadratic diamagnetic and self-polarization terms in cavity quantum electrodynamics
,”
ACS Photonics
7
,
975
990
(
2020
).
28.
M. A. D.
Taylor
,
A.
Mandal
,
W.
Zhou
, and
P.
Huo
, “
Resolution of gauge ambiguities in molecular cavity quantum electrodynamics
,”
Phys. Rev. Lett.
125
,
123602
(
2020
).
29.
D. D.
Bernardis
,
P.
Pilar
,
T.
Jaako
,
S. D.
Liberato
, and
P.
Rabl
, “
Breakdown of gauge invariance in ultrastrong-coupling cavity QED
,”
Phys. Rev. A
98
,
053819
(
2018
).
30.
M.
Lilichenko
and
D. V.
Matyushov
, “
Control of electron transfer rates in liquid crystalline media
,”
J. Phys. Chem. B
107
,
1937
1940
(
2003
).
31.
T.
Kato
,
M.
Yoshio
,
T.
Ichikawa
,
B.
Soberats
,
H.
Ohno
, and
M.
Funahashi
, “
Transport of ions and electrons in nanostructured liquid crystals
,”
Nat. Rev. Mater.
2
,
17001
(
2017
).
32.
P.
Kokhanchik
,
H.
Sigurdsson
,
B.
Piętka
,
J.
Szczytko
, and
P. G.
Lagoudakis
, “
Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry
,”
Phys. Rev. B
103
,
L081406
(
2021
).
33.
K.
Rechcinska
,
M.
Król
,
R.
Mazur
,
P.
Morawiak
,
R.
Mirek
,
K.
łempicka
,
W.
Bardyszewski
,
M.
Matuszewski
,
P.
Kula
,
W.
Piecek
,
P. G.
Lagoudakis
,
B.
Pietka
, and
J.
Szczytko
, “
Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities
,”
Science
366
,
727
730
(
2019
).
34.

Indeed, if Î=P̂+Q̂ represents the identity of the full electronic Hilbert space, then P̂μ̂P̂ is properly confined in the subspace P̂, whereas P̂μ̂2P̂=P̂μ̂(P̂+Q̂)μ̂P̂ contains the terms outside the subspace P̂. More numerical evidence can be found in Fig. S2 of the supplementary material in Ref. 28.

35.
A. O.
Caldeira
and
A. J.
Leggett
, “
Influence of dissipation on quantum tunneling in macroscopic systems
,”
Phys. Rev. Lett.
46
,
211
214
(
1981
).
36.
K. H.
Hughes
,
C. D.
Christ
, and
I.
Burghardt
, “
Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. I. Application to single surface dynamics
,”
J. Chem. Phys.
131
,
024109
(
2009
).
37.
G.
Hanna
and
R.
Kapral
, “
Quantum-classical Liouville dynamics of nonadiabatic proton transfer
,”
J. Chem. Phys.
122
,
244505
(
2005
).
38.
T.
Yamamoto
and
W. H.
Miller
, “
Path integral evaluation of the quantum instanton rate constant for proton transfer in a polar solvent
,”
J. Chem. Phys.
122
,
044106
(
2005
).
39.
R.
Collepardo-Guevara
,
I. R.
Craig
, and
D. E.
Manolopoulos
, “
Proton transfer in a polar solvent from ring polymer reaction rate theory
,”
J. Chem. Phys.
128
,
144502
(
2008
).
40.
B. J.
Ka
and
W. H.
Thompson
, “
Nonadiabatic effects on proton transfer rate constants in a nanoconfined solvent
,”
J. Phys. Chem. B
114
,
7535
7542
(
2010
).
41.
I. R.
Craig
,
M.
Thoss
, and
H.
Wang
, “
Accurate quantum-mechanical rate constants for a linear response Azzouz-Borgis proton transfer model employing the multilayer multiconfiguration time-dependent Hartree approach
,”
J. Chem. Phys.
135
,
064504
(
2011
).
42.
H.
Azzouz
and
D.
Borgis
, “
A quantum molecular-dynamics study of proton-transfer reactions along asymmetrical H bonds in solution
,”
J. Chem. Phys.
98
,
7361
7374
(
1993
).
43.
S.
Hammes-Schiffer
and
J. C.
Tully
, “
Proton transfer in solution: Molecular dynamics with quantum transitions
,”
J. Chem. Phys.
101
,
4657
4667
(
1994
).
44.
S. Y.
Kim
and
S.
Hammes-Schiffer
, “
Molecular dynamics with quantum transitions for proton transfer: Quantum treatment of hydrogen and donor–acceptor motions
,”
J. Chem. Phys.
119
,
4389
4398
(
2003
).
45.
R. P.
McRae
,
G. K.
Schenter
,
B. C.
Garrett
,
Z.
Svetlicic
, and
D. G.
Truhlar
, “
Variational transition state theory evaluation of the rate constant for proton transfer in a polar solvent
,”
J. Chem. Phys.
115
,
8460
8480
(
2001
).
46.
D.
Antoniou
and
S. D.
Schwartz
, “
A molecular dynamics quantum Kramers study of proton transfer in solution
,”
J. Chem. Phys.
110
,
465
472
(
1999
).
47.
D.
Antoniou
and
S. D.
Schwartz
, “
Quantum proton transfer with spatially dependent friction: Phenol-amine in methyl chloride
,”
J. Chem. Phys.
110
,
7359
7364
(
1999
).
48.
L.
Chen
and
Q.
Shi
, “
Quantum rate dynamics for proton transfer reactions in condensed phase: The exact hierarchical equations of motion approach
,”
J. Phys. Chem.
130
,
134505
(
2009
).
49.
Q.
Shi
,
L.
Zhu
, and
L.
Chen
, “
Quantum rate dynamics for proton transfer reaction in a model system: Effect of the rate promoting vibrational mode
,”
J. Chem. Phys.
135
,
044505
(
2011
).
50.
W.
Xie
,
Y.
Xu
,
L.
Zhu
, and
Q.
Shi
, “
Mixed quantum classical calculation of proton transfer reaction rates: From deep tunneling to over the barrier regimes
,”
J. Chem. Phys.
140
,
174105
(
2014
).
51.
J.
Flick
,
H.
Appel
,
M.
Ruggenthaler
, and
A.
Rubio
, “
Cavity Born–Oppenheimer approximation for correlated electron–nuclear-photon systems
,”
J. Chem. Theory Comput.
13
,
1616
1625
(
2017
).
52.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Elsevier
,
San Diego
,
2002
).
53.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
, “
Quantum mechanical rate constants for bimolecular reactions
,”
J. Chem. Phys.
79
,
4889
4898
(
1983
).
54.
D.
Chandler
and
D.
Wu
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
Oxford
,
1987
).
55.
V. P.
Zhdanov
, “
Vacuum field in a cavity, light-mediated vibrational coupling, and chemical reactivity
,”
Chem. Phys.
535
,
110767
(
2020
).
56.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
341
(
1990
).
57.
E. W.
Fischer
and
P.
Saalfrank
, “
Ground state properties and infrared spectra of anharmonic vibrational polaritons of small molecules in cavities
,”
J. Chem. Phys.
154
,
104311
(
2021
).
58.
R. F.
Grote
and
J. T.
Hynes
, “
The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models
,”
J. Chem. Phys.
73
,
2715
2732
(
1980
).
59.
B. J.
Gertner
,
K. R.
Wilson
, and
J. T.
Hynes
, “
Nonequilibrium solvation effects on reaction rates for model SN2 reactions in water
,”
J. Chem. Phys.
90
,
3537
3558
(
1989
).
60.
P.
Hanggi
and
F.
Mojtabai
, “
Thermally activated escape rate in presence of long-time memory
,”
Phys. Rev. A
26
,
1168
1170
(
1982
).
61.
B.
Carmeli
and
A.
Nitzan
, “
Non-Markovian theory of activated rate processes. III. Bridging between the Kramers limits
,”
Phys. Rev. A
29
,
1481
1495
(
1984
).
62.
S. C.
Tucker
,
M. E.
Tuckerman
,
B. J.
Berne
, and
E.
Pollak
, “
Comparison of rate theories for generalized Langevin dynamics
,”
J. Chem. Phys.
95
,
5809
5826
(
1991
).
63.
H.
Eyring
, “
The activated complex in chemical reactions
,”
J. Chem. Phys.
3
,
107
115
(
1935
).
64.
N. B.
Slater
, “
New formulation of gaseous unimolecular dissociation rates
,”
J. Chem. Phys.
24
,
1256
1257
(
1956
).
65.
E.
Pollak
, “
Theory of activated rate processes: A new derivation of Kramers’ expression
,”
J. Chem. Phys.
85
,
865
867
(
1986
).
66.
I. S.
Novikov
,
Y. V.
Suleimanov
, and
A. V.
Shapeev
, “
Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning
,”
Phys. Chem. Chem. Phys.
20
,
29503
29512
(
2018
).
67.
J.
Zuo
,
Y.
Li
,
H.
Guo
, and
D.
Xie
, “
Rate coefficients of the HCl + OH → Cl + H2O reaction from ring polymer molecular dynamics
,”
J. Phys. Chem. A
120
,
3433
3440
(
2016
).
68.
B.
Peters
,
Reaction Rate Theory and Rare Event
(
Elsevier
,
Amsterdam
,
2017
).
69.
G.
van der Zwan
and
J. T.
Hynes
, “
Dynamical polar solvent effects on solution reactions: A simple continuum model
,”
J. Chem. Phys.
76
,
2993
3001
(
1982
).
70.
N. E.
Henriksen
and
F. Y.
Hansen
,
Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics
(
Oxford University Press
,
Oxford
,
2008
).
71.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
, “
Polariton chemistry: Controlling molecular dynamics with optical cavities
,”
Chem. Sci.
9
,
6325
6339
(
2018
).
72.
L.
Qiu
,
A.
Mandal
,
O.
Morshed
,
M. T.
Meidenbauer
,
W.
Girten
,
P.
Huo
,
A. N.
Vamivakas
, and
T. D.
Krauss
, “
Molecular polaritons generated from strong coupling between CDSE nanoplatelets and a dielectric optical cavity
,”
J. Phys. Chem. Lett.
12
,
5030
5038
(
2021
).
73.
D. M.
Coles
,
P.
Michetti
,
C.
Clark
,
W. C.
Tsoi
,
A. M.
Adawi
,
J.-S.
Kim
, and
D. G.
Lidzey
, “
Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities
,”
Adv. Funct. Mater.
21
,
3691
3696
(
2011
).
74.
J.
del Pino
,
F. A. Y. N.
Schröder
,
A. W.
Chin
,
J.
Feist
, and
F. J.
Garcia-Vidal
, “
Tensor network simulation of non-Markovian dynamics in organic polaritons
,”
Phys. Rev. Lett.
121
,
227401
(
2018
).
75.
J.
Lather
and
J.
George
, “
Improving enzyme catalytic efficiency by co-operative vibrational strong coupling of water
,”
J. Phys. Chem. Lett.
12
,
379
384
(
2021
).
76.
H.
Hiura
and
A.
Shalabney
, “
Vacuum-field catalysis: Accelerated reactions by vibrational ultra strong coupling
,” chemRxiv:7234721.v5 (
2019
).
77.
M. V.
Imperatore
,
J. B.
Asbury
, and
N. C.
Giebink
, “
Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime
,”
J. Chem. Phys.
154
,
191103
(
2021
).

Supplementary Material

You do not currently have access to this content.