DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag106+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag106+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2–NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs–400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster–ligand interactions and, in turn, cluster brightness.

1.
R.
Kubo
,
J. Phys. Soc. Jpn.
17
(
6
),
975
986
(
1962
).
2.
R.
Kubo
,
A.
Kawabata
, and
S.-I.
Kobayashi
,
Annu. Rev. Mater. Sci.
14
(
1
),
49
66
(
1984
).
3.
J.
Zheng
,
P. R.
Nicovich
, and
R. M.
Dickson
,
Annu. Rev. Phys. Chem.
58
,
409
431
(
2007
).
4.
W.
Schulze
,
I.
Rabin
, and
G.
Ertl
,
ChemPhysChem
5
(
3
),
403
407
(
2004
).
5.
C. I.
Richards
,
S.
Choi
,
J.-C.
Hsiang
,
Y.
Antoku
,
T.
Vosch
,
A.
Bongiorno
,
Y.-L.
Tzeng
, and
R. M.
Dickson
,
J. Am. Chem. Soc.
130
(
15
),
5038
5039
(
2008
).
6.
S. M.
Swasey
,
S. M.
Copp
,
H. C.
Nicholson
,
A.
Gorovits
,
P.
Bogdanov
, and
E. G.
Gwinn
,
Nanoscale
10
(
42
),
19701
19705
(
2018
).
7.
H.-C.
Yeh
,
J.
Sharma
,
J. J.
Han
,
J. S.
Martinez
, and
J. H.
Werner
,
Nano Lett.
10
(
8
),
3106
3110
(
2010
).
8.
J. T.
Petty
,
O. O.
Sergev
,
D. A.
Nicholson
,
P. M.
Goodwin
,
B.
Giri
, and
D. R.
McMullan
,
Anal. Chem.
85
(
20
),
9868
9876
(
2013
).
9.
P. R.
O’Neill
,
E. G.
Gwinn
, and
D. K.
Fygenson
,
J. Phys. Chem. C
115
(
49
),
24061
24066
(
2011
).
10.
M.
Brust
,
M.
Walker
,
D.
Bethell
,
D. J.
Schiffrin
, and
R.
Whyman
,
J. Chem. Soc., Chem. Commun.
1994
(
7
),
801
802
.
11.
S.
Chen
,
R. S.
Ingram
,
M. J.
Hostetler
,
J. J.
Pietron
,
R. W.
Murray
,
T. G.
Schaaff
,
J. T.
Khoury
,
M. M.
Alvarez
, and
R. L.
Whetten
,
Science
280
(
5372
),
2098
2101
(
1998
).
12.
X.
Kang
and
M.
Zhu
,
Chem. Soc. Rev.
48
(
8
),
2422
2457
(
2019
).
13.
Y.
Li
and
R.
Jin
,
J. Am. Chem. Soc.
142
(
32
),
13627
13644
(
2020
).
14.
H.
Häkkinen
,
Nat. Chem.
4
(
6
),
443
455
(
2012
).
15.
W.
Hou
,
M.
Dasog
, and
R. W. J.
Scott
,
Langmuir
25
(
22
),
12954
12961
(
2009
).
16.
V. R.
Jupally
,
R.
Kota
,
E. V.
Dornshuld
,
D. L.
Mattern
,
G. S.
Tschumper
,
D.-E.
Jiang
, and
A.
Dass
,
J. Am. Chem. Soc.
133
(
50
),
20258
20266
(
2011
).
17.
A.
Henglein
,
P.
Mulvaney
, and
T.
Linnert
,
Faraday Discuss.
92
,
31
44
(
1991
).
18.
J.
Zheng
and
R. M.
Dickson
,
J. Am. Chem. Soc.
124
(
47
),
13982
13983
(
2002
).
19.
T.
Yamane
and
N.
Davidson
,
Biochim. Biophys. Acta
55
,
609
621
(
1962
).
20.
M.
Daune
,
C. A.
Dekker
, and
H. K.
Schachman
,
Biopolymers
4
,
51
76
(
1966
).
21.
J. T.
Petty
,
J.
Zheng
,
N. V.
Hud
, and
R. M.
Dickson
,
J. Am. Chem. Soc.
126
(
16
),
5207
5212
(
2004
).
22.
C. M.
Ritchie
,
K. R.
Johnsen
,
J. R.
Kiser
,
Y.
Antoku
,
R. M.
Dickson
, and
J. T.
Petty
,
J. Phys. Chem. C
111
(
1
),
175
181
(
2007
).
23.
B.
Sengupta
,
C. M.
Ritchie
,
J. G.
Buckman
,
K. R.
Johnsen
,
P. M.
Goodwin
, and
J. T.
Petty
,
J. Phys. Chem. C
112
(
48
),
18776
18782
(
2008
).
24.
S. M.
Copp
,
P.
Bogdanov
,
M.
Debord
,
A.
Singh
, and
E.
Gwinn
,
Adv. Mater.
26
(
33
),
5839
5845
(
2014
).
25.
D.
Schultz
and
E. G.
Gwinn
,
Chem. Commun.
48
(
46
),
5748
5750
(
2012
).
26.
J. T.
Petty
,
B.
Giri
,
I. C.
Miller
,
D. A.
Nicholson
,
O. O.
Sergev
,
T. M.
Banks
, and
S. P.
Story
,
Anal. Chem.
85
(
4
),
2183
2190
(
2013
).
27.
J. T.
Petty
,
M.
Ganguly
,
A. I.
Yunus
,
C.
He
,
P. M.
Goodwin
,
Y.-H.
Lu
, and
R. M.
Dickson
,
J. Phys. Chem. C
122
(
49
),
28382
28392
(
2018
).
28.
J. T.
Petty
,
O. O.
Sergev
,
M.
Ganguly
,
I. J.
Rankine
,
D. M.
Chevrier
, and
P.
Zhang
,
J. Am. Chem. Soc.
138
(
10
),
3469
3477
(
2016
).
29.
D.
Schultz
,
K.
Gardner
,
S. S. R.
Oemrawsingh
,
N.
Markešević
,
K.
Olsson
,
M.
Debord
,
D.
Bouwmeester
, and
E.
Gwinn
,
Adv. Mater.
25
,
2797
2803
(
2013
).
30.
M. S.
Blevins
,
D.
Kim
,
C. M.
Crittenden
,
S.
Hong
,
H.-C.
Yeh
,
J. T.
Petty
, and
J. S.
Brodbelt
,
ACS Nano
13
(
12
),
14070
14079
(
2019
).
31.
D. J. E.
Huard
,
A.
Demissie
,
D.
Kim
,
D.
Lewis
,
R. M.
Dickson
,
J. T.
Petty
, and
R. L.
Lieberman
,
J. Am. Chem. Soc.
141
(
29
),
11465
11470
(
2019
).
32.
C.
Cerretani
,
H.
Kanazawa
,
T.
Vosch
, and
J.
Kondo
,
Angew. Chem., Int. Ed.
58
,
17153
(
2019
).
33.
R. R.
Ramazanov
,
T. S.
Sych
,
Z. V.
Reveguk
,
D. A.
Maksimov
,
A. A.
Vdovichev
, and
A. I.
Kononov
,
J. Phys. Chem. Lett.
7
(
18
),
3560
3566
(
2016
).
34.
D.
Schultz
,
R. G.
Brinson
,
N.
Sari
,
J. A.
Fagan
,
C.
Bergonzo
,
N. J.
Lin
, and
J. P.
Dunkers
,
Soft Matter
15
(
21
),
4284
4293
(
2019
).
35.
A.
Gonzàlez-Rosell
,
C.
Cerretani
,
P.
Mastracco
,
T.
Vosch
, and
S. M.
Copp
,
Nanoscale Adv.
3
(
5
),
1230
1260
(
2021
).
36.
Y.
Zhang
,
C.
He
,
J. T.
Petty
, and
B.
Kohler
,
J. Phys. Chem. Lett.
11
(
21
),
8958
8963
(
2020
).
37.
S. A.
Patel
,
M.
Cozzuol
,
J. M.
Hales
,
C. I.
Richards
,
M.
Sartin
,
J.-C.
Hsiang
,
T.
Vosch
,
J. W.
Perry
, and
R. M.
Dickson
,
J. Phys. Chem. C
113
(
47
),
20264
20270
(
2009
).
38.
C.
Cerretani
,
M. R.
Carro-Temboury
,
S.
Krause
,
S. A.
Bogh
, and
T.
Vosch
,
Chem. Commun.
53
(
93
),
12556
12559
(
2017
).
39.
C.
He
,
P. M.
Goodwin
,
A. I.
Yunus
,
R. M.
Dickson
, and
J. T.
Petty
,
J. Phys. Chem. C
123
(
28
),
17588
17597
(
2019
).
40.
J. T.
Petty
,
C.
Fan
,
S. P.
Story
,
B.
Sengupta
,
M.
Sartin
,
J.-C.
Hsiang
,
J. W.
Perry
, and
R. M.
Dickson
,
J. Phys. Chem. B
115
(
24
),
7996
8003
(
2011
).
41.
E.
Thyrhaug
,
S. A.
Bogh
,
M. R.
Carro-Temboury
,
C. S.
Madsen
,
T.
Vosch
, and
D.
Zigmantas
,
Nat. Commun.
8
,
15577
(
2017
).
42.
Z.
Reveguk
,
R.
Lysenko
,
R.
Ramazanov
, and
A.
Kononov
,
Phys. Chem. Chem. Phys.
20
(
44
),
28205
28210
(
2018
).
43.
S. A.
Bogh
,
M. R.
Carro-Temboury
,
C.
Cerretani
,
S. M.
Swasey
,
S. M.
Copp
,
E. G.
Gwinn
, and
T.
Vosch
,
Methods Appl. Fluoresc.
6
(
2
),
024004
(
2018
).
44.
D.
Andreatta
,
J. L.
Pérez Lustres
,
S. A.
Kovalenko
,
N. P.
Ernsting
,
C. J.
Murphy
,
R. S.
Coleman
, and
M. A.
Berg
,
J. Am. Chem. Soc.
127
(
20
),
7270
7271
(
2005
).
45.
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
Nature
369
(
6480
),
471
473
(
1994
).
46.
I. H. M.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
,
Biochim. Biophys. Acta, Bioenerg.
1657
(
2-3
),
82
104
(
2004
).
47.
T.
Vosch
,
Y.
Antoku
,
J.-C.
Hsiang
,
C. I.
Richards
,
J. I.
Gonzalez
, and
R. M.
Dickson
,
Proc. Natl. Acad. Sci. U. S. A.
104
(
31
),
12616
12621
(
2007
).
48.
J. T.
Petty
,
C.
Fan
,
S. P.
Story
,
B.
Sengupta
,
A. St.
John Iyer
,
Z.
Prudowsky
, and
R. M.
Dickson
,
J. Phys. Chem. Lett.
1
(
17
),
2524
2529
(
2010
).
49.
I. L.
Volkov
,
P. Y.
Serdobintsev
, and
A. I.
Kononov
,
J. Phys. Chem. C
117
(
45
),
24079
24083
(
2013
).
50.
N. J.
Turro
,
V.
Ramamurthy
, and
J. C.
Scaiano
,
Modern Molecular Photochemistry of Organic Molecules
(
Science Books
,
2010
).
51.
Z. K.
Wu
and
R. C.
Jin
,
Nano Lett.
10
(
7
),
2568
2573
(
2010
).
52.
M.
Walter
,
J.
Akola
,
O.
Lopez-Acevedo
,
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
R. L.
Whetten
,
H.
Gronbeck
, and
H.
Häkkinen
,
Proc. Natl. Acad. Sci. U. S. A.
105
(
27
),
9157
9162
(
2008
).
53.
M.
Pelton
,
Y.
Tang
,
O. M.
Bakr
, and
F.
Stellacci
,
J. Am. Chem. Soc.
134
(
29
),
11856
11859
(
2012
).
54.
S. H.
Yau
,
B. A.
Ashenfelter
,
A.
Desireddy
,
A. P.
Ashwell
,
O.
Varnavski
,
G. C.
Schatz
,
T. P.
Bigioni
, and
T.
Goodson
,
J. Phys. Chem. C
121
(
2
),
1349
1361
(
2017
).
55.
V.
Soto-Verdugo
,
H.
Metiu
, and
E.
Gwinn
,
J. Chem. Phys.
132
(
19
),
195102
(
2010
).
56.
R.
Longuinhos
,
A. D.
Lúcio
,
H.
Chacham
, and
S. S.
Alexandre
,
Phys. Rev. E
93
(
5
),
052413
(
2016
).
57.
M. A.
Filatov
,
S.
Baluschev
, and
K.
Landfester
,
Chem. Soc. Rev.
45
(
17
),
4668
4689
(
2016
).

Supplementary Material

You do not currently have access to this content.