As first explained by the classic Asakura–Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid–polymer mixtures into colloid-rich and colloid-poor phases, with practical relevance for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that fluctuating shapes of random-walk coils can significantly modify depletion potentials [W. K. Lim and A. R. Denton, Soft Matter 12, 2247 (2016); J. Chem. Phys. 144, 024904 (2016)]. We further demonstrated that the shapes of polymers in crowded environments sensitively depend on solvent quality [W. J. Davis and A. R. Denton, J. Chem. Phys. 149, 124901 (2018)]. Here, we apply Monte Carlo simulation to analyze the influence of solvent quality on depletion potentials in mixtures of hard-sphere colloids and nonadsorbing polymer coils, modeled as ellipsoids whose principal radii fluctuate according to random-walk statistics. We consider both self-avoiding and non-self-avoiding random walks, corresponding to polymers in good and theta solvents, respectively. Our simulation results demonstrate that depletion of polymers of equal molecular weight induces much stronger attraction between colloids in good solvents than in theta solvents and confirm that depletion interactions are significantly influenced by aspherical polymer conformations.

1.
S.
Asakura
and
F.
Oosawa
,
J. Chem. Phys.
22
,
1255
(
1954
).
2.
K.
Binder
,
P.
Virnau
, and
A.
Statt
,
J. Chem. Phys.
141
,
140901
(
2014
).
3.
A.
Vrij
,
Pure Appl. Chem.
48
,
471
(
1976
).
4.
P. N.
Pusey
, “
Colloidal suspensions
,” in
Liquids, Freezing and Glass Transition, Les Houches Session 51
, edited by
J.-P.
Hansen
,
D.
Levesque
, and
J.
Zinn-Justin
(
North-Holland
,
Amsterdam
,
1991
), Vol. 2, pp.
763
931
.
5.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
(
Springer
,
Heidelberg
,
2011
).
6.
M.
Fuchs
and
K. S.
Schweizer
,
J. Phys.: Condens. Matter
14
,
R239
(
2002
).
7.
G. J.
Fleer
and
R.
Tuinier
,
Adv. Colloid Interface Sci.
143
,
1
(
2008
).
8.
V. B.
Tolstoguzov
,
Food Hydrocolloids
4
,
429
(
1991
).
9.
C. G.
de Kruif
and
R.
Tuinier
,
Food Hydrocolloids
15
,
555
(
2001
).
10.
A.
Kulkarni
and
C.
Zukoski
,
J. Cryst. Growth
232
,
156
(
2001
).
11.
A.
Stradner
,
G.
Foffi
,
N.
Dorsaz
,
G.
Thurston
, and
P.
Schurtenberger
,
Phys. Rev. Lett.
99
,
198103
(
2007
).
12.
W.
Norde
,
Colloids and Interfaces in Life Sciences and Bionanotechnology
, 2nd ed. (
CRC
,
Boca Raton
,
2011
).
13.
Z.
Dogic
,
K. R.
Purdy
,
E.
Grelet
,
M.
Adams
, and
S.
Fraden
,
Phys. Rev. E
69
,
051702
(
2004
).
14.
T.
Li
,
X.
Zan
,
Y.
Sun
,
X.
Zuo
,
X.
Li
,
A.
Senesi
,
R. E.
Winans
,
Q.
Wang
, and
B.
Lee
,
Langmuir
29
,
12777
(
2013
).
15.
17.
A. P.
Minton
,
J. Biol. Chem.
276
,
10577
(
2001
).
19.
K.
Richter
,
M.
Nessling
, and
P.
Lichter
,
J. Cell Sci.
120
,
1673
(
2007
).
20.
K.
Richter
,
M.
Nessling
, and
P.
Lichter
,
Biochim. Biophys. Acta
1783
,
2100
(
2008
).
21.
A. H.
Elcock
,
Curr. Opin. Struct. Biol.
20
,
196
(
2010
).
22.
R.
Hancock
, in
Genome Organization and Function in the Cell Nucleus
, edited by
K.
Rippe
(
Wiley-VCH
,
Weinheim
,
2012
), pp.
169
184
.
24.
M.
Fixman
,
J. Chem. Phys.
36
,
306
(
1962
).
25.
P. J.
Flory
and
S.
Fisk
,
J. Chem. Phys.
44
,
2243
(
1966
).
26.
P. J.
Flory
,
Statistical Mechanics of Chain Molecules
(
Wiley
,
New York
,
1969
).
27.
H.
Yamakawa
,
Modern Theory of Polymer Solutions
(
Harper & Row
,
New York
,
1970
).
28.
H.
Fujita
and
T.
Norisuye
,
J. Chem. Phys.
52
,
1115
(
1970
).
29.
30.
K.
Šolc
,
Macromolecules
6
,
378
(
1973
).
31.
D. N.
Theodorou
and
U. W.
Suter
,
Macromolecules
18
,
1206
(
1985
).
32.
J.
Rudnick
and
G.
Gaspari
,
J. Phys. A: Math. Gen.
19
,
L191
(
1986
).
33.
J.
Rudnick
and
G.
Gaspari
,
Science
237
,
384
(
1987
).
34.
M.
Bishop
and
C. J.
Saltiel
,
J. Chem. Phys.
88
,
6594
(
1988
).
35.
S. J.
Sciutto
,
J. Phys. A: Math. Gen.
29
,
5455
(
1996
).
36.
L.
Schäfer
,
Excluded Volume Effects in Polymer Solutions as Explained by the Renormalization Group
(
Springer
,
Berlin
,
1999
).
37.
M.
Murat
and
K.
Kremer
,
J. Chem. Phys.
108
,
4340
(
1998
).
38.
F.
Eurich
and
P.
Maass
,
J. Chem. Phys.
114
,
7655
(
2001
).
39.
R. J.
Ellis
,
Curr. Opin. Struct. Biol.
11
,
114
(
2001
).
40.
R. J.
Ellis
,
Trends Biochem. Sci.
26
,
597
(
2001
).
41.
J. R. C.
van der Maarel
,
Introduction to Biopolymer Physics
(
World Scientific
,
Singapore
,
2008
).
42.
R.
Phillips
,
J.
Kondev
, and
J.
Theriot
,
Physical Biology of the Cell
(
Garland Science
,
New York
,
2009
).
43.
M. S.
Cheung
,
Curr. Opin. Struct. Biol.
23
,
212
(
2013
).
44.
A. R.
Denton
, “
Crowding in polymer-nanoparticle mixtures
,” in
New Models of the Cell Nucleus: Crowding and Entropic Forces and Phase Separation and Fractals
, edited by
R.
Hancock
and
K. W.
Jeon
(
Academic Press
,
UK
,
2013
), pp.
27
72
.
45.
A. Y.
Grosberg
,
S.
Nechaev
,
M.
Tamm
, and
O.
Vasilyev
,
Phys. Rev. Lett.
96
,
228105
(
2006
).
46.
J. M.
Polson
,
M. F.
Hassanabad
, and
A.
McCaffrey
,
J. Chem. Phys.
138
,
024906
(
2013
).
47.
I.
Ali
,
D.
Marenduzzo
, and
J. M.
Yeomans
,
Phys. Rev. Lett.
96
,
208102
(
2006
).
48.
X.
Ye
,
T.
Narayanan
,
P.
Tong
, and
J. S.
Huang
,
Phys. Rev. Lett.
76
,
4640
(
1996
).
49.
A. I.
Nakatani
,
W.
Chen
,
R. G.
Schmidt
,
G. V.
Gordon
, and
C. C.
Han
,
Polymer
42
,
3713
(
2001
).
50.
T.
Kramer
,
R.
Schweins
, and
K.
Huber
,
J. Chem. Phys.
123
,
014903
(
2005
).
51.
T.
Kramer
,
R.
Schweins
, and
K.
Huber
,
Macromolecules
38
,
9783
(
2005
).
52.
C.
Le Coeur
,
B.
Demé
, and
S.
Longeville
,
Phys. Rev. E
79
,
031910
(
2009
).
53.
C.
Le Coeur
,
J.
Teixeira
,
P.
Busch
, and
S.
Longeville
,
Phys. Rev. E
81
,
061914
(
2010
).
54.
K.
Nusser
,
S.
Neueder
,
G. J.
Schneider
,
M.
Meyer
,
W.
Pyckhout-Hintzen
,
L.
Willner
,
A.
Radulescu
, and
D.
Richter
,
Macromolecules
43
,
9837
(
2010
).
55.
A.
Milling
and
S.
Biggs
,
J. Colloid Interface Sci.
170
,
604
(
1995
).
56.
D.
Rudhardt
,
C.
Bechinger
, and
P.
Leiderer
,
Phys. Rev. Lett.
81
,
1330
(
1998
).
57.
R.
Verma
,
J. C.
Crocker
,
T. C.
Lubensky
, and
A. G.
Yodh
,
Phys. Rev. Lett.
81
,
4004
(
1998
).
58.
K. H.
Lin
,
J. C.
Crocker
,
A. C.
Zeri
, and
A. G.
Yodh
,
Phys. Rev. Lett.
87
,
088301
(
2001
).
59.
F.
Hilitski
,
A. R.
Ward
,
L.
Cajamarca
,
M. F.
Hagan
,
G. M.
Grason
, and
Z.
Dogic
,
Phys. Rev. Lett.
114
,
138102
(
2015
).
60.
Y.
Hennequin
,
M.
Evens
,
C. M. Q.
Angulo
, and
J. S.
van Duijneveldt
,
J. Chem. Phys.
123
,
054906
(
2005
).
61.
Z.
Zhang
and
J. S.
van Duijneveldt
,
Langmuir
22
,
63
(
2006
).
62.
K. J.
Mutch
,
J. S.
van Duijneveldt
, and
J.
Eastoe
,
Soft Matter
3
,
155
(
2007
).
63.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell
,
Ithaca
,
1979
).
64.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon
,
Oxford
,
1986
).
65.
J. F.
Joanny
,
L.
Leibler
, and
P. G.
de Gennes
,
J. Polym. Sci., Polym. Phys. Ed.
17
,
1073
(
1979
).
66.
67.
68.
69.
A. R.
Denton
and
M.
Schmidt
,
J. Phys.: Condens. Matter
14
,
12051
(
2002
).
70.
B.
Lu
and
A. R.
Denton
,
J. Phys.: Condens. Matter
23
,
285102
(
2011
).
71.
W. K.
Lim
and
A. R.
Denton
,
J. Chem. Phys.
141
,
114909
(
2014
).
72.
J. Y.
Walz
and
A.
Sharma
,
J. Colloid Interface Sci.
168
,
485
(
1994
).
73.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
,
Physica A
222
,
10
(
1995
).
74.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
,
J. Chem. Phys.
106
,
3721
(
1997
).
75.
E.
Eisenriegler
,
A.
Hanke
, and
S.
Dietrich
,
Phys. Rev. E
54
,
1134
(
1996
).
76.
A.
Hanke
,
E.
Eisenriegler
, and
S.
Dietrich
,
Phys. Rev. E
59
,
6853
(
1999
).
77.
E.
Eisenriegler
,
A.
Bringer
, and
R.
Maassen
,
J. Chem. Phys.
118
,
8093
(
2003
).
79.
C. E.
Woodward
and
J.
Forsman
,
J. Chem. Phys.
133
,
154902
(
2010
).
80.
C. E.
Woodward
and
J.
Forsman
,
J. Chem. Phys.
136
,
084903
(
2012
).
81.
H.
Wang
,
C. E.
Woodward
, and
J.
Forsman
,
J. Chem. Phys.
140
,
194903
(
2014
).
82.
M.
Surve
,
V.
Pryamitsyn
, and
V.
Ganesan
,
J. Chem. Phys.
122
,
154901
(
2005
).
83.
A. P.
Chatterjee
and
K. S.
Schweizer
,
J. Chem. Phys.
109
,
10464
(
1998
).
84.
A. P.
Chatterjee
and
K. S.
Schweizer
,
J. Chem. Phys.
109
,
10477
(
1998
).
85.
A. P.
Chatterjee
and
K. S.
Schweizer
,
Macromolecules
32
,
923
(
1999
).
86.
S.
Ramakrishnan
,
M.
Fuchs
,
K. S.
Schweizer
, and
C. F.
Zukoski
,
J. Chem. Phys.
116
,
2201
(
2002
).
87.
A.
Moncho-Jordá
,
A. A.
Louis
,
P. G.
Bolhuis
, and
R.
Roth
,
J. Phys.: Condens. Matter
15
,
S3429
(
2003
).
88.
C.
Bechinger
,
D.
Rudhardt
,
P.
Leiderer
,
R.
Roth
, and
S.
Dietrich
,
Phys. Rev. Lett.
83
,
3960
(
1999
).
89.
M.
Schmidt
and
M.
Fuchs
,
J. Chem. Phys.
117
,
6308
(
2002
).
90.
T.
Goel
,
C. N.
Patra
,
S. K.
Ghosh
, and
T.
Mukherjee
,
J. Chem. Phys.
121
,
4865
(
2004
).
91.
C. E.
Woodward
and
J.
Forsman
,
Phys. Rev. Lett.
100
,
098301
(
2008
).
92.
J.
Forsman
and
C. E.
Woodward
,
J. Chem. Phys.
131
,
044903
(
2009
).
93.
R.
Tuinier
,
G. A.
Vliegenthart
, and
H. N. W.
Lekkerkerker
,
J. Chem. Phys.
113
,
10768
(
2000
).
94.
R.
Tuinier
and
H. N. W.
Lekkerkerker
,
Eur. Phys. J. E
6
,
129
(
2001
).
95.
R.
Tuinier
and
A. V.
Petukhov
,
Macromol. Theory Simul.
11
,
975
(
2002
).
96.
E. J.
Meijer
and
D.
Frenkel
,
Phys. Rev. Lett.
67
,
1110
(
1991
).
97.
E. J.
Meijer
and
D.
Frenkel
,
J. Chem. Phys.
100
,
6873
(
1994
).
98.
R.
Dickman
and
A.
Yethiraj
,
J. Chem. Phys.
100
,
4683
(
1994
).
99.
P. G.
Bolhuis
,
A. A.
Louis
, and
J.-P.
Hansen
,
Phys. Rev. Lett.
89
,
128302
(
2002
).
100.
A. A.
Louis
,
P. G.
Bolhuis
,
E. J.
Meijer
, and
J. P.
Hansen
,
J. Chem. Phys.
117
,
1893
(
2002
).
101.
P. G.
Bolhuis
,
E. J.
Meijer
, and
A. A.
Louis
,
Phys. Rev. Lett.
90
,
068304
(
2003
).
102.
M.
Doxastakis
,
Y.-L.
Chen
,
O.
Guzmán
, and
J. J.
de Pablo
,
J. Chem. Phys.
120
,
9335
(
2004
).
103.
M.
Doxastakis
,
Y. L.
Chen
, and
J. J.
de Pablo
,
J. Chem. Phys.
123
,
034901
(
2005
).
104.
D. P.
Goldenberg
,
J. Mol. Biol.
326
,
1615
(
2003
).
105.
R. I.
Dima
and
D.
Thirumalai
,
J. Phys. Chem. B
108
,
6564
(
2004
).
106.
M. S.
Cheung
,
D.
Klimov
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci.
102
,
4753
(
2005
).
107.
N. A.
Denesyuk
and
D.
Thirumalai
,
J. Am. Chem. Soc.
133
,
11858
(
2011
).
108.
N. A.
Denesyuk
and
D.
Thirumalai
,
Biophys. Rev.
5
,
225
(
2013
).
109.
M.
Camargo
and
C. N.
Likos
,
Phys. Rev. Lett.
104
,
078301
(
2010
).
110.
A.
Linhananta
,
G.
Amadei
, and
T.
Miao
,
J. Phys.: Conf. Ser.
341
,
012009
(
2012
).
111.
E.
Chen
,
A.
Christiansen
,
Q.
Wang
,
M. S.
Cheung
,
D. S.
Kliger
, and
P.
Wittung-Stafshede
,
Biochem
51
,
9836
(
2012
).
112.
T.
Hoppe
and
J.-M.
Yuan
,
J. Phys. Chem. B
115
,
2006
(
2011
).
113.
N. A.
Denesyuk
and
D.
Thirumalai
,
J. Phys. Chem. B
117
,
4901
(
2013
).
114.
M.
Triantafillou
and
R. D.
Kamien
,
Phys. Rev. E
59
,
5621
(
1999
).
115.
M.
Piech
and
J. Y.
Walz
,
J. Colloid Interface Sci.
232
,
86
(
2000
).
116.
W. K.
Lim
and
A. R.
Denton
,
J. Chem. Phys.
144
,
024904
(
2016
).
117.
W. K.
Lim
and
A. R.
Denton
,
Soft Matter
12
,
2247
(
2016
).
118.
W. J.
Davis
and
A. R.
Denton
,
J. Chem. Phys.
149
,
124901
(
2018
).
119.
F.
Eurich
,
A.
Karatchentsev
,
J.
Baschnagel
,
W.
Dieterich
, and
P.
Maass
,
J. Chem. Phys.
127
,
134905
(
2007
).
120.
S. M.
Oversteegen
and
R.
Roth
,
J. Chem. Phys.
122
,
214502
(
2005
).
121.
A. A.
Louis
,
P. G.
Bolhuis
,
E. J.
Meijer
, and
J. P.
Hansen
,
J. Chem. Phys.
116
,
10547
(
2002
).
122.
D. G. A. L.
Aarts
,
R.
Tuinier
, and
H. N. W.
Lekkerkerker
,
J. Phys.: Condens. Matter
14
,
7551
(
2002
).
123.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic
,
London
,
2001
).
124.
J. C.
Hart
, in
Graphics Gems IV
, edited by
P. S.
Heckbert
(
Academic
,
San Diego
,
1994
), pp.
113
119
.
125.
H.
Lee
,
R. M.
Venable
,
A. D.
MacKerell
, and
R. W.
Pastor
,
Biophys. J.
95
,
1590
(
2008
).
126.
M.
Yanagisawa
,
M.
Imai
, and
T.
Taniguchi
,
Phys. Rev. Lett.
100
,
148102
(
2008
).
127.
P. S.
Mohanty
,
D.
Paloli
,
J. J.
Crassous
,
E.
Zaccarelli
, and
P.
Schurtenberger
,
J. Chem. Phys.
140
,
094901
(
2014
).
128.
M. J.
Bergman
,
N.
Gnan
,
M.
Obiols-Rabasa
,
J.-M.
Meijer
,
L.
Rovigatti
,
E.
Zaccarelli
, and
P.
Schurtenberger
,
Nature Commun.
9
,
5039
(
2018
).
129.
A. S.
Karas
,
J.
Glaser
, and
S. C.
Glotzer
,
Soft Matter
12
,
5199
(
2016
).
You do not currently have access to this content.