We investigate exploration patterns of a microswimmer, modeled as an active Brownian particle, searching for a target region located in a well of an energy landscape and separated from the initial position of the particle by high barriers. We find that the microswimmer can enhance its success rate in finding the target by tuning its activity and its persistence in response to features of the environment. The target-search patterns of active Brownian particles are counterintuitive and display characteristics robust to changes in the energy landscape. On the contrary, the transition rates and transition-path times are sensitive to the details of the specific energy landscape. In striking contrast to the passive case, the presence of additional local minima does not significantly slow down the active-target-search dynamics.

1.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
, “
Active Brownian particles
,”
Eur. Phys. J.: Spec. Top.
202
,
1
(
2012
).
2.
E.
Lauga
and
T. R.
Powers
, “
The hydrodynamics of swimming microorganisms
,”
Rep. Prog. Phys.
72
,
096601
(
2009
).
3.
C.
Bechinger
,
R.
Di Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
4.
É.
Fodor
,
C.
Nardini
,
M. E.
Cates
,
J.
Tailleur
,
P.
Visco
, and
F.
van Wijland
, “
How far from equilibrium is active matter?
,”
Phys. Rev. Lett.
117
,
038103
(
2016
).
5.
M. E.
Cates
, “
Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics?
,”
Rep. Prog. Phys.
75
,
042601
(
2012
).
6.
D.
Needleman
and
Z.
Dogic
, “
Active matter at the interface between materials science and cell biology
,”
Nat. Rev. Mater.
2
,
17048
(
2017
).
7.
R.
Lipowsky
and
S.
Klumpp
, “
‘Life is motion’: Multiscale motility of molecular motors
,”
Physica A
352
,
53
(
2005
).
8.
S.
Henkes
,
K.
Kostanjevec
,
J. M.
Collinson
,
R.
Sknepnek
, and
E.
Bertin
, “
Dense active matter model of motion patterns in confluent cell monolayers
,”
Nat. Commun.
11
,
1405
(
2020
).
9.
É.
Fodor
and
M.
Cristina Marchetti
, “
The statistical physics of active matter: From self-catalytic colloids to living cells
,”
Physica A
504
,
106
(
2018
).
10.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
11.
P.
Erkoc
,
I. C.
Yasa
,
H.
Ceylan
,
O.
Yasa
,
Y.
Alapan
, and
M.
Sitti
, “
Mobile microrobots for active therapeutic delivery
,”
Adv. Ther.
2
,
1800064
(
2019
).
12.
E.
Lauga
,
W. R.
DiLuzio
,
G. M.
Whitesides
, and
H. A.
Stone
, “
Swimming in circles: Motion of bacteria near solid boundaries
,”
Biophys. J.
90
,
400
(
2006
).
13.
M.
Eisenbach
and
L. C.
Giojalas
, “
Sperm guidance in mammals—An unpaved road to the egg
,”
Nat. Rev. Mol. Cell Biol.
7
,
276
285
(
2006
).
14.
H.
Wu
,
A.
Farutin
,
W.-F.
Hu
,
M.
Thiébaud
,
S.
Rafaï
,
P.
Peyla
,
M.-C.
Lai
, and
C.
Misbah
, “
Amoeboid swimming in a channel
,”
Soft Matter
12
,
7470
(
2016
).
15.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
16.
T.
Vicsek
and
A.
Zafeiris
, “
Collective motion
,”
Phys. Rep.
517
,
71
(
2012
).
17.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
18.
M. E.
Cates
and
J.
Tailleur
, “
Motility-induced phase separation
,”
Annu. Rev. Condens. Matter Phys.
6
,
219
(
2015
).
19.
S.
Naahidi
,
M.
Jafari
,
F.
Edalat
,
K.
Raymond
,
A.
Khademhosseini
, and
P.
Chen
, “
Biocompatibility of engineered nanoparticles for drug delivery
,”
J. Controlled Release
166
,
182
(
2013
).
20.
D.
Patra
,
S.
Sengupta
,
W.
Duan
,
H.
Zhang
,
R.
Pavlick
, and
A.
Sen
, “
Intelligent, self-powered, drug delivery systems
,”
Nanoscale
5
,
1273
(
2013
).
21.
D.
Vilela
,
M. M.
Stanton
,
J.
Parmar
, and
S.
Sánchez
, “
Microbots decorated with silver nanoparticles kill bacteria in aqueous media
,”
ACS Appl. Mater. Interfaces
9
,
22093
(
2017
).
22.
O.
Bénichou
,
C.
Loverdo
,
M.
Moreau
, and
R.
Voituriez
, “
Intermittent search strategies
,”
Rev. Mod. Phys.
83
,
81
(
2011
).
23.
O.
Bénichou
,
M.
Coppey
,
M.
Moreau
,
P.-H.
Suet
, and
R.
Voituriez
, “
Optimal search strategies for hidden targets
,”
Phys. Rev. Lett.
94
,
198101
(
2005
).
24.
E.
Perez Ipiña
,
S.
Otte
,
R.
Pontier-Bres
,
D.
Czerucka
, and
F.
Peruani
, “
Bacteria display optimal transport near surfaces
,”
Nat. Phys.
15
,
610
(
2019
).
25.
K.
Schaar
,
A.
Zöttl
, and
H.
Stark
, “
Detention times of microswimmers close to surfaces: Influence of hydrodynamic interactions and noise
,”
Phys. Rev. Lett.
115
,
038101
(
2015
).
26.
A.
Gosztolai
and
M.
Barahona
, “
Cellular memory enhances bacterial chemotactic navigation in rugged environments
,”
Commun. Phys.
3
,
47
(
2020
).
27.
Y.
Yang
and
M. A.
Bevan
, “
Optimal navigation of self-propelled colloids
,”
ACS Nano
12
,
10712
(
2018
).
28.
G.
Volpe
and
G.
Volpe
, “
The topography of the environment alters the optimal search strategy for active particles
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
11350
(
2017
).
29.
Y.
Yang
,
M. A.
Bevan
, and
B.
Li
, “
Efficient navigation of colloidal robots in an unknown environment via deep reinforcement learning
,”
Adv. Intell. Syst.
2
,
1900106
(
2020
).
30.
A.
Daddi-Moussa-Ider
,
H.
Löwen
, and
B.
Liebchen
, “
Hydrodynamics can determine the optimal route for microswimmer navigation
,”
Commun. Phys.
4
,
15
(
2021
).
31.
D. F. B.
Haeufle
,
T.
Bäuerle
,
J.
Steiner
,
L.
Bremicker
,
S.
Schmitt
, and
C.
Bechinger
, “
External control strategies for self-propelled particles: Optimizing navigational efficiency in the presence of limited resources
,”
Phys. Rev. E
94
,
012617
(
2016
).
32.
B.
Liebchen
and
H.
Löwen
, “
Optimal navigation strategies for active particles
,”
Europhys. Lett.
127
,
34003
(
2019
).
33.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
341
(
1990
).
34.
W.
E
and
E.
Vanden-Eijnden
, “
Transition-path theory and path-finding algorithms for the study of rare events
,”
Annu. Rev. Phys. Chem.
61
,
391
(
2010
).
35.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
,”
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
36.
J. T.
Berryman
and
T.
Schilling
, “
Sampling rare events in nonequilibrium and nonstationary systems
,”
J. Chem. Phys.
133
,
244101
(
2010
).
37.
A.
Geiseler
,
P.
Hänggi
, and
G.
Schmid
, “
Kramers escape of a self-propelled particle
,”
Eur. Phys. J. B
89
,
175
(
2016
).
38.
E.
Woillez
,
Y.
Zhao
,
Y.
Kafri
,
V.
Lecomte
, and
J.
Tailleur
, “
Activated escape of a self-propelled particle from a metastable state
,”
Phys. Rev. Lett.
122
,
258001
(
2019
).
39.
A.
Militaru
,
M.
Innerbichler
,
M.
Frimmer
,
F.
Tebbenjohanns
,
L.
Novotny
, and
C.
Dellago
, “
Escape dynamics of active particles in multistable potentials
,”
Nat. Commun.
12
,
2446
(
2021
).
40.
W.
Ebeling
,
L.
Schimansky-Geier
,
A.
Neiman
, and
A.
Scharnhorst
, “
Stochastic dynamics of active agents in external fields
,”
Fluctuation Noise Lett.
05
,
L185
(
2005
).
41.
L.
Zanovello
,
M.
Caraglio
,
T.
Franosch
, and
P.
Faccioli
, “
Target search of active agents crossing high energy barriers
,”
Phys. Rev. Lett.
126
,
018001
(
2021
).
42.
K.
Neupane
,
D. A. N.
Foster
,
D. R.
Dee
,
H.
Yu
,
F.
Wang
, and
M. T.
Woodside
, “
Direct observation of transition paths during the folding of proteins and nucleic acids
,”
Science
352
,
239
(
2016
).
43.
H. S.
Chung
,
J. M.
Louis
, and
W. A.
Eaton
, “
Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
11837
(
2009
).
44.
M.
Sega
,
P.
Faccioli
,
F.
Pederiva
,
G.
Garberoglio
, and
H.
Orland
, “
Quantitative protein dynamics from dominant folding pathways
,”
Phys. Rev. Lett.
99
,
118102
(
2007
).
45.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
, “
Transition-event durations in one-dimensional activated processes
,”
J. Chem. Phys.
126
,
074504
(
2007
).
46.
M.
Caraglio
,
S.
Put
,
E.
Carlon
, and
C.
Vanderzande
, “
The influence of absorbing boundary conditions on the transition path time statistics
,”
Phys. Chem. Chem. Phys.
20
,
25676
(
2018
).
47.
M.
Caraglio
,
T.
Sakaue
, and
E.
Carlon
, “
Transition path times in asymmetric barriers
,”
Phys. Chem. Chem. Phys.
22
,
3512
(
2020
).
48.
P.
Metzner
,
C.
Schütte
, and
E.
Vanden-Eijnden
, “
Illustration of transition path theory on a collection of simple examples
,”
J. Chem. Phys.
125
,
084110
(
2006
).
49.
G.
Bartolucci
,
S.
Orioli
, and
P.
Faccioli
, “
Transition path theory from biased simulations
,”
J. Chem. Phys.
149
,
072336
(
2018
).
50.

Note that in our earlier work, we used a different convention for the Péclet number; the current definition increases the former by a factor of 2LDϑ/3D.

51.
E.
Carlon
,
H.
Orland
,
T.
Sakaue
, and
C.
Vanderzande
, “
Effect of memory and active forces on transition path time distributions
,”
J. Phys. Chem. B
122
,
11186
(
2018
).
52.
K.
Müller
and
L. D.
Brown
, “
Location of saddle points and minimum energy paths by a constrained simplex optimization procedure
,”
Theor. Chim. Acta
53
,
75
(
1979
).
53.
O.
Dauchot
and
V.
Démery
, “
Dynamics of a self-propelled particle in a harmonic trap
,”
Phys. Rev. Lett.
122
,
068002
(
2019
).
54.
A.
Pototsky
and
H.
Stark
, “
Active Brownian particles in two-dimensional traps
,”
Europhys. Lett.
98
,
50004
(
2012
).
55.
S. C.
Takatori
,
R.
De Dier
,
J.
Vermant
, and
J. F.
Brady
, “
Acoustic trapping of active matter
,”
Nat. Commun.
7
,
10694
(
2016
).
56.
K.
Malakar
,
A.
Das
,
A.
Kundu
,
K. V.
Kumar
, and
A.
Dhar
, “
Steady state of an active Brownian particle in a two-dimensional harmonic trap
,”
Phys. Rev. E
101
,
022610
(
2020
).
57.
J.
Wang
,
Y.
Chen
,
W.
Yu
, and
K.
Luo
, “
Target search kinetics of self-propelled particles in a confining domain
,”
J. Chem. Phys.
144
,
204702
(
2016
).
You do not currently have access to this content.