The multi-configurational short-range (sr) density functional theory has been extended to the calculation of indirect spin–spin coupling constants (SSCCs) for nuclear magnetic resonance spectroscopy. The performance of the new method is compared to Kohn–Sham density functional theory and the ab initio complete active space self-consistent field for a selected set of molecules with good reference values. Two density functionals have been considered, the local density approximation srLDA and srPBE from the GGA class of functionals. All srDFT calculations are of Hartree–Fock-type HF-srDFT or complete active space-type CAS-srDFT. In all cases, the calculated SSCC values are of the same quality for srLDA and srPBE functionals, suggesting that one should use the computationally cost-effective srLDA functionals in applications. For all the calculated SSCCs in organic compounds, the best choice is HF-srDFT; the more expensive CAS-srDFT does not provide better values for these single-reference molecules. Fluorine is a challenge; in particular, the FF, FC, and FO couplings have much higher statistical errors than the rest. For SSCCs involving fluorine and a metal atom CAS-srDFT with singlet, generalized Tamm–Dancoff approximation is needed to get good SSCC values although the reference ground state is not a multi-reference case. For VF61, all other considered models fail blatantly.

1.
T.
Helgaker
,
M.
Jaszuński
, and
K.
Ruud
, “
Ab initio methods for the calculation of NMR shielding and indirect spin–spin coupling constants
,”
Chem. Rev.
99
,
293
352
(
1999
).
2.
J.
Vaara
, “
Theory and computation of nuclear magnetic resonance parameters
,”
Phys. Chem. Chem. Phys.
9
,
5399
(
2007
).
3.
M. W.
Lodewyk
,
M. R.
Siebert
, and
D. J.
Tantillo
, “
Computational prediction of 1H and 13C chemical shifts: A useful tool for natural product, mechanistic, and synthetic organic chemistry
,”
Chem. Rev.
112
,
1839
1862
(
2011
).
4.
N. F.
Ramsey
, “
Electron coupled interactions between nuclear spins in molecules
,”
Phys. Rev.
91
,
303
307
(
1953
).
5.
T.
Helgaker
,
M.
Watson
, and
N. C.
Handy
, “
Analytical calculation of nuclear magnetic resonance indirect spin–spin coupling constants at the generalized gradient approximation and hybrid levels of density-functional theory
,”
J. Chem. Phys.
113
,
9402
9409
(
2000
).
6.
J.
Autschbach
and
T.
Ziegler
, “
Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds
,”
J. Chem. Phys.
113
,
936
947
(
2000
).
7.
V.
Sychrovský
,
J.
Gräfenstein
, and
D.
Cremer
, “
Nuclear magnetic resonance spin–spin coupling constants from coupled perturbed density functional theory
,”
J. Chem. Phys.
113
,
3530
3547
(
2000
).
8.
V.
Barone
,
J. E.
Peralta
,
R. H.
Contreras
, and
J. P.
Snyder
, “
DFT calculation of NMR JFF spin–spin coupling constants in fluorinated pyridines
,”
J. Phys. Chem. A
106
,
5607
5612
(
2002
).
9.
A. D.
Becke
, “
Perspective: Fifty years of density-functional theory in chemical physics
,”
J. Chem. Phys.
140
,
18A301
(
2014
).
10.
V. G.
Malkin
,
O. L.
Malkina
, and
D. R.
Salahub
, “
Calculation of spin–spin coupling constants using density functional theory
,”
Chem. Phys. Lett.
221
,
91
99
(
1994
).
11.
R. M.
Dickson
and
T.
Ziegler
, “
NMR spin–spin coupling constants from density functional theory with Slater-type basis functions
,”
J. Phys. Chem.
100
,
5286
5290
(
1996
).
12.
J.
Geertsen
and
J.
Oddershede
, “
Second-order polarization propagator calculations of indirect nuclear spin–spin coupling tensors in the water molecule
,”
Chem. Phys.
90
,
301
311
(
1984
).
13.
J.
Geertsen
and
J.
Oddershede
, “
Higher RPA and second-order polarization propagator calculations of coupling constants in acetylene
,”
Chem. Phys.
104
,
67
72
(
1986
).
14.
T.
Enevoldsen
,
J.
Oddershede
, and
S. P. A.
Sauer
, “
Correlated calculations of indirect nuclear spin–spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)
,”
Theor. Chem. Acc.
100
,
275
284
(
1998
).
15.
H.
Kjær
,
S. P. A.
Sauer
, and
J.
Kongsted
, “
Benchmarking NMR indirect nuclear spin–spin coupling constants: SOPPA, SOPPA(CC2), and SOPPA(CCSD) versus CCSD
,”
J. Chem. Phys.
133
,
144106
(
2010
).
16.
I. L.
Rusakova
,
L. B.
Krivdin
,
Y. Y.
Rusakov
, and
A. B.
Trofimov
, “
Algebraic-diagrammatic construction polarization propagator approach to indirect nuclear spin–spin coupling constants
,”
J. Chem. Phys.
137
,
044119
(
2012
).
17.
H.
Sekino
and
R. J.
Bartlett
, “
Nuclear spin–spin coupling constants evaluated using many body methods
,”
J. Chem. Phys.
85
,
3945
3949
(
1986
).
18.
S. A.
Perera
,
H.
Sekino
, and
R. J.
Bartlett
, “
Coupled-cluster calculations of indirect nuclear coupling constants: The importance of non-Fermi contact contributions
,”
J. Chem. Phys.
101
,
2186
2191
(
1994
).
19.
S. A.
Perera
,
M.
Nooijen
, and
R. J.
Bartlett
, “
Electron correlation effects on the theoretical calculation of nuclear magnetic resonance spin–spin coupling constants
,”
J. Chem. Phys.
104
,
3290
3305
(
1996
).
20.
A. A.
Auer
and
J.
Gauss
, “
Triple excitation effects in coupled-cluster calculations of indirect spin–spin coupling constants
,”
J. Chem. Phys.
115
,
1619
1622
(
2001
).
21.
R.
Faber
,
S. P. A.
Sauer
, and
J.
Gauss
, “
Importance of triples contributions to NMR spin–spin coupling constants computed at the CC3 and CCSDT levels
,”
J. Chem. Theory Comput.
13
,
696
709
(
2017
).
22.
O.
Vahtras
,
H.
Ågren
,
P.
Jørgensen
,
H. J.
Aa. Jensen
,
S. B.
Padkjær
, and
T.
Helgaker
, “
Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory
,”
J. Chem. Phys.
96
,
6120
6125
(
1992
).
23.
A.
Barszczewicz
,
T.
Helgaker
,
M.
Jaszuński
,
P.
Jørgensen
, and
K.
Ruud
, “
Multiconfigurational self-consistent field calculations of nuclear magnetic resonance indirect spin–spin coupling constants
,”
J. Chem. Phys.
101
,
6822
6828
(
1994
).
24.
M.
Hubert
,
E. D.
Hedegård
, and
H. J.
Aa. Jensen
, “
Investigation of multiconfigurational short-range density functional theory for electronic excitations in organic molecules
,”
J. Chem. Theory Comput.
12
,
2203
2213
(
2016
).
25.
E. R.
Kjellgren
,
E. D.
Hedegård
, and
H. J.
Aa. Jensen
, “
Triplet excitation energies from multiconfigurational short-range density-functional theory response calculations
,”
J. Chem. Phys.
151
,
124113
(
2019
).
26.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjertenaes
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J.
Aa. Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjaergaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnaes
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V. V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A. S.
de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Ågren
, “
The Dalton quantum chemistry program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
284
(
2013
).
27.
DALTON, a molecular electronic structure program, release Dalton2020, see http://daltonprogram.org,
2020
.
28.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Oxford University Press
,
1983
).
29.
E.
Fromager
,
J.
Toulouse
, and
H. J.
Aa. Jensen
, “
On the universality of the long-/short-range separation in multiconfigurational density-functional theory
,”
J. Chem. Phys.
126
,
074111
(
2007
).
30.
E.
Fromager
,
S.
Knecht
, and
H. J.
Aa. Jensen
, “
Multi-configuration time-dependent density-functional theory based on range separation
,”
J. Chem. Phys.
138
,
084101
(
2013
).
31.
E. D.
Hedegård
,
J. M. H.
Olsen
,
S.
Knecht
,
J.
Kongsted
, and
H. J.
Aa. Jensen
, “
Polarizable embedding with a multiconfiguration short-range density functional theory linear response method
,”
J. Chem. Phys.
142
,
114113
(
2015
).
32.
E. D.
Hedegård
,
J.
Toulouse
, and
H. J.
Aa. Jensen
, “
Multiconfigurational short-range density-functional theory for open-shell systems
,”
J. Chem. Phys.
148
,
214103
(
2018
).
33.
T.
Saue
and
T.
Helgaker
, “
Four-component relativistic Kohn–Sham theory
,”
J. Comput. Chem.
23
,
814
823
(
2002
).
34.
P.
Sałek
,
O.
Vahtras
,
T.
Helgaker
, and
H.
Ågren
, “
Density-functional theory of linear and nonlinear time-dependent molecular properties
,”
J. Chem. Phys.
117
,
9630
9645
(
2002
).
35.
J.
Olsen
and
P.
Jørgensen
, “
Linear and non-linear response functions for an exact state and for an MCSCF state
,”
J. Chem. Phys.
82
,
3235
3264
(
1985
).
36.
J.
Olsen
,
D. L.
Yeager
, and
P.
Jørgensen
, “
Triplet excitation properties in large scale multiconfiguration linear response calculations
,”
J. Chem. Phys.
91
,
381
388
(
1989
).
37.
DALTON, a molecular electronic structure program, release Dalton2018, see http://daltonprogram.org,
2018
.
38.
S.
Paziani
,
S.
Moroni
,
P.
Gori-Giorgi
, and
G. B.
Bachelet
, “
Local-spin-density functional for multideterminant density functional theory
,”
Phys. Rev. B
73
,
155111
(
2006
).
39.
E.
Goll
,
H.-J.
Werner
, and
H.
Stoll
, “
A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers
,”
Phys. Chem. Chem. Phys.
7
,
3917
3923
(
2005
).
40.
E.
Goll
,
H.-J.
Werner
,
H.
Stoll
,
T.
Leininger
,
P.
Gori-Giorgi
, and
A.
Savin
, “
A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers
,”
Chem. Phys.
329
,
276
282
(
2006
).
41.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
42.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
43.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
44.
J. C.
Slater
and
J. C.
Phillips
, “
Quantum theory of molecules and solids vol. 4: The self-consistent field for molecules and solids
,”
Phys. Today
27
(
12
),
49
50
(
1974
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
46.
U.
Benedikt
,
A. A.
Auer
, and
F.
Jensen
, “
Optimization of augmentation functions for correlated calculations of spin–spin coupling constants and related properties
,”
J. Chem. Phys.
129
,
064111
(
2008
).
47.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
48.
R.
Faber
and
S. P. A.
Sauer
, “
On the convergence of the ccJ-pVXZ and pcJ-n basis sets in CCSD calculations of nuclear spin–spin coupling constants: Some difficult cases
,”
Theor. Chem. Acc.
137
,
35
(
2018
).
49.
J.
Khandogin
and
T.
Ziegler
, “
A density functional study of nuclear magnetic resonance spin–spin coupling constants in transition-metal systems
,”
Spectrochim. Acta, Part A
55
,
607
624
(
1999
).
50.
V.
Barone
,
P. F.
Provasi
,
J. E.
Peralta
,
J. P.
Snyder
,
S. P. A.
Sauer
, and
R. H.
Contreras
, “
Substituent effects on scalar 2J(F19,F19) and 3J(F19,F19) NMR couplings: A comparison of SOPPA and DFT methods
,”
J. Phys. Chem. A
107
,
4748
4754
(
2003
).
51.
E. D.
Hedegård
,
J.
Kongsted
, and
S. P. A.
Sauer
, “
Optimized basis sets for calculation of electron paramagnetic resonance hyperfine coupling constants: aug-cc-pVTZ-J for the 3d atoms Sc–Zn
,”
J. Chem. Theory Comput.
7
,
4077
4087
(
2011
).
52.
P. F.
Provasi
,
G. A.
Aucar
, and
S. P. A.
Sauer
, “
The effect of lone pairs and electronegativity on the indirect nuclear spin–spin coupling constants in CH2X (X = CH2, NH, O, S): Ab initio calculations using optimized contracted basis sets
,”
J. Chem. Phys.
115
,
1324
1334
(
2001
).
53.
P. F.
Provasi
and
S. P. A.
Sauer
, “
Optimized basis sets for the calculation of indirect nuclear spin–spin coupling constants involving the atoms B, Al, Si, P, and Cl
,”
J. Chem. Phys.
133
,
054308
(
2010
).
54.
B.
Mann
,
13C NMR Data for Organometallic Compounds (Organometallic Chemistry)
(
Academic Press
,
1982
).
55.
M. J.
Buckingham
,
G. E.
Hawkes
, and
J. R.
Thornback
, “
The 99Tc and 17O nuclear magnetic spectra of TcO4–the first detailed report of a 99Tc resonance
,”
Inorg. Chim. Acta
56
,
L41
L42
(
1981
).
56.
N.
Hao
,
B. G.
Sayer
,
G.
Dénès
,
D. G.
Bickley
,
C.
Detellier
, and
M. J.
McGlinchey
, “
Titanium-47 and -49 nuclear magnetic resonance spectroscopy: Chemical applications
,”
J. Magn. Reson.
50
,
50
63
(
1982
).
57.
N.
Hao
,
M. J.
McGlinchey
,
B. G.
Sayer
, and
G. J.
Schrobilgen
, “
A 61Ni NMR study of some d10 nickel complexes
,”
J. Magn. Reson.
46
,
158
162
(
1982
).
58.
D.
Rehder
,
H.-C.
Bechthold
,
A.
Keçeci
,
H.
Schmidt
, and
M.
Siewing
, “
A comparative study of metal shielding in low valent vanadium, niobium and manganese complexes
,”
Z. Naturforsch., B
37
,
631
645
(
1982
).
59.
J.
Banck
and
A.
Schwenk
, “
183Tungsten NMR studies
,”
Z. Phys. B
20
,
75
80
(
1975
).
60.
G. L. J. T.
Bailey
and
R. J.
Clark
, “
Molybdenum nuclear magnetic resonance studies of trifluorophosphine complexes
,”
Inorg. Chem.
21
,
2085
(
1982
).
61.
E. A. C.
Lucken
,
K.
Noack
, and
D. F.
Williams
, “
59Co nuclear magnetic resonance of organo-cobalt compounds
,”
J. Chem. Soc. A
1967
,
148
.
62.
M. L.
Martin
, “
B. E. Mann and B. F. Taylor. 13C NMR data for organometallic compounds. Academic Press, London, 1981. pp. 326
,”
Org. Magn. Reson.
19
,
vi
(
1982
).
63.
G. M.
Bodner
and
L. J.
Todd
, “
Fourier transform carbon-13 nuclear magnetic resonance study of transition metal carbonyl complexes
,”
Inorg. Chem.
13
,
1335
1338
(
1974
).
64.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
A new basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
65.
D.
Feller
, “
The role of databases in support of computational chemistry calculations
,”
J. Comput. Chem.
17
,
1571
1586
(
1996
).
66.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
, “
Basis set exchange: A community database for computational sciences
,”
J. Chem. Inf. Model.
47
,
1045
1052
(
2007
).
67.
H. J.
Aa. Jensen
,
P.
Jørgensen
,
H.
Ågren
, and
J.
Olsen
, “
Second-order Møller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self-consistent field calculations
,”
J. Chem. Phys.
88
,
3834
3839
(
1988
).
68.
J. M.
García de la Vega
and
J.
San Fabián
, “
Assessment of DFT functionals with fluorine–fluorine coupling constants
,”
Mol. Phys.
113
,
1924
1936
(
2015
).
69.
B.
Helmich-Paris
, “
CASSCF linear response calculations for large open-shell molecules
,”
J. Chem. Phys.
150
,
174121
(
2019
).
70.
C. Y.
Cheng
,
M. S.
Ryley
,
M. J. G.
Peach
,
D. J.
Tozer
,
T.
Helgaker
, and
A. M.
Teale
, “
Molecular properties in the Tamm–Dancoff approximation: Indirect nuclear spin–spin coupling constants
,”
Mol. Phys.
113
,
1937
1951
(
2015
).
71.
M.
Hubert
,
H. J.
Aa. Jensen
, and
E. D.
Hedegård
, “
Excitation spectra of nucleobases with multiconfigurational density functional theory
,”
J. Phys. Chem. A
120
,
36
43
(
2016
).

Supplementary Material

You do not currently have access to this content.