Depletion interactions between colloids of discoidal shape can induce their self-assembly into columnar aggregates. This is an effect of entropic origin with important implications in a range of colloidal systems, particularly in the clustering of erythrocytes that determine the rheological properties of blood. Here, we investigate the equilibrium state reached by discoidal colloids in a solution of smaller depletant particles. We develop a thermodynamic model of depletion-induced aggregation based on self-assembly theory and solve it analytically. We test the validity of the model by using Langevin simulations of a system of discs and depletant particles in which the depletion interaction emerges naturally. In addition, we consider the effect of an attractive interaction between depletant and discoidal particles, which we show induces a re-entrant dependence of aggregation with temperature.

1.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
2.
B.
Götzelmann
,
R.
Evans
, and
S.
Dietrich
, “
Depletion forces in fluids
,”
Phys. Rev. E
57
,
6785
(
1998
).
3.
Y. N.
Ohshima
,
H.
Sakagami
,
K.
Okumoto
,
A.
Tokoyoda
,
T.
Igarashi
,
K. B.
Shintaku
,
S.
Toride
,
H.
Sekino
,
K.
Kabuto
, and
I.
Nishio
, “
Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure
,”
Phys. Rev. Lett.
78
,
3963
(
1997
).
4.
D.
Rudhardt
,
C.
Bechinger
, and
P.
Leiderer
, “
Direct measurement of depletion potentials in mixtures of colloids and nonionic polymers
,”
Phys. Rev. Lett.
81
,
1330
(
1998
).
5.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).
6.
M.
Adams
,
Z.
Dogic
,
S. L.
Keller
, and
S.
Fraden
, “
Entropically driven microphase transitions in mixtures of colloidal rods and spheres
,”
Nature
393
,
349
(
1998
).
7.
T. G.
Mason
, “
Osmotically driven shape-dependent colloidal separations
,”
Phys. Rev. E
66
,
060402
(
2002
).
8.
S.
Sacanna
,
W. T. M.
Irvine
,
P. M.
Chaikin
, and
D. J.
Pine
, “
Lock and key colloids
,”
Nature
464
,
575
(
2010
).
9.
L. C.
Hsiao
,
B. A.
Schultz
,
J.
Glaser
,
M.
Engel
,
M. E.
Szakasits
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Metastable orientational order of colloidal discoids
,”
Nat. Commun.
6
,
8507
(
2015
).
10.
A. V.
Petukhov
,
R.
Tuinier
, and
G. J.
Vroege
, “
Entropic patchiness: Effects of colloid shape and depletion
,”
Curr. Opin. Colloid Interface Sci.
30
,
54
61
(
2017
).
11.
D.
Chakrabarti
and
D. J.
Wales
, “
Tilted and helical columnar phases for an axially symmetric discoidal system
,”
Phys. Rev. Lett.
100
,
127801
(
2008
).
12.
K.
Zhao
and
T. G.
Mason
, “
Directing colloidal self-assembly through roughness-controlled depletion attractions
,”
Phys. Rev. Lett.
99
,
268301
(
2007
).
13.
S.
Chien
, “
Shear dependence of effective cell volume as a determinant of blood viscosity
,”
Science
168
,
977
979
(
1970
).
14.
O. K.
Baskurt
,
B.
Neu
, and
H. J.
Meiselman
,
Red Blood Cell Aggregation
(
CRC Press
,
2011
).
15.
P.
Steffen
,
C.
Verdier
, and
C.
Wagner
, “
Quantification of depletion-induced adhesion of red blood cells
,”
Phys. Rev. Lett.
110
,
018102
(
2013
).
16.
A.
Nehring
,
T. N.
Shendruk
, and
H. W.
de Haan
, “
Morphology of depletant-induced erythrocyte aggregates
,”
Soft Matter
14
,
8160
8171
(
2018
).
17.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
, “
Depletion force in colloidal systems
,”
Physica A
222
,
10
24
(
1995
).
18.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
, “
Depletion stabilization by semidilute rods
,”
Phys. Rev. Lett.
75
,
4548
(
1995
).
19.
T.
Biben
,
P.
Bladon
, and
D.
Frenkel
, “
Depletion effects in binary hard-sphere fluids
,”
J. Phys.: Condens. Matter
8
,
10799
(
1996
).
20.
S.-W.
Hu
,
Y.-J.
Sheng
, and
H.-K.
Tsao
, “
Phase diagram of solvophilic nanodiscs in a polymer solution: Depletion attraction
,”
J. Phys. Chem. B
117
,
4098
4108
(
2013
).
21.
S.-W.
Hu
,
Y.-J.
Sheng
, and
H.-K.
Tsao
, “
Depletion-induced size fractionation of nanorod dispersions
,”
Soft Matter
9
,
7261
7266
(
2013
).
22.
C.
Calero
and
I.
Pagonabarraga
, “
Self-assembly of microscopic rods due to depletion interaction
,”
Entropy
22
,
1114
(
2020
).
23.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
(
Springer
,
2011
), Vol. 833.
24.

In cases with RDa, f2πRD2a02RDA(r)rdr0adz(az)ecPA(r)(za)02RDrdr0adzecPA(r)(za).

25.
R.
Nagarajan
and
E.
Ruckenstein
, “
Theory of surfactant self-assembly: A predictive molecular thermodynamic approach
,”
Langmuir
7
,
2934
2969
(
1991
).
26.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
2011
).
27.
J. S.
Andreu
,
J.
Camacho
, and
J.
Faraudo
, “
Aggregation of superparamagnetic colloids in magnetic fields: The quest for the equilibrium state
,”
Soft Matter
7
,
2336
2339
(
2011
).
28.
J.
Faraudo
,
J. S.
Andreu
,
C.
Calero
, and
J.
Camacho
, “
Predicting the self-assembly of superparamagnetic colloids under magnetic fields
,”
Adv. Funct. Mater.
26
,
3837
3858
(
2016
).
29.
P. J.
Flory
and
R. S.
Frost
, “
Statistical thermodynamics of mixtures of rodlike particles. 3. The most probable distribution
,”
Macromolecules
11
,
1126
1133
(
1978
).
30.
T. D.
Nguyen
,
C. L.
Phillips
,
J. A.
Anderson
, and
S. C.
Glotzer
, “
Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units
,”
Comput. Phys. Commun.
182
,
2307
2313
(
2011
).
31.
H. C.
Andersen
,
J. D.
Weeks
, and
D.
Chandler
, “
Relationship between the hard-sphere fluid and fluids with realistic repulsive forces
,”
Phys. Rev. A
4
,
1597
(
1971
).
32.
J. A.
Anderson
,
C. D.
Lorenz
, and
A.
Travesset
, “
General purpose molecular dynamics simulations fully implemented on graphics processing units
,”
J. Comput. Phys.
227
,
5342
5359
(
2008
).
33.
J.
Glaser
,
T. D.
Nguyen
,
J. A.
Anderson
,
P.
Lui
,
F.
Spiga
,
J. A.
Millan
,
D. C.
Morse
, and
S. C.
Glotzer
, “
Strong scaling of general-purpose molecular dynamics simulations on GPUs
,”
Comput. Phys. Commun.
192
,
97
107
(
2015
).
34.

Note that the maximum number of bonds in a system of N discs would correspond to a single cluster with N − 1 bonds.

You do not currently have access to this content.