Redox-active molecules are of interest in many fields, such as medicine, catalysis, or energy storage. In particular, in supercapacitor applications, they can be grafted to ionic liquids to form so-called biredox ionic liquids. To completely understand the structural and transport properties of such systems, an insight at the molecular scale is often required, but few force fields are developed ad hoc for these molecules. Moreover, they do not include polarization effects, which can lead to inaccurate solvation and dynamical properties. In this work, we developed polarizable force fields for redox-active species anthraquinone (AQ) and 2,2,6,6-tetra-methylpiperidinyl-1-oxyl (TEMPO) in their oxidized and reduced states as well as for acetonitrile. We validate the structural properties of AQ, AQ•−, AQ2−, TEMPO, and TEMPO+ in acetonitrile against density functional theory-based molecular dynamics simulations and we study the solvation of these redox molecules in acetonitrile. This work is a first step toward the characterization of the role played by AQ and TEMPO in electrochemical and catalytic devices.

1.
E. M.
Malik
and
C. E.
Müller
, “
Anthraquinones as pharmacological tools and drugs
,”
Med. Res. Rev.
36
,
705
748
(
2016
).
2.
P. J.
Figiel
,
M.
Leskelä
, and
T.
Repo
, “
TEMPO-copper (II) diimine-catalysed oxidation of benzylic alcohols in aqueous media
,”
Adv. Synth. Catal.
349
,
1173
1179
(
2007
).
3.
M.
Hayashi
,
M.
Shibuya
, and
Y.
Iwabuchi
, “
Oxidation of alcohols to carbonyl compounds with diisopropyl azodicarboxylate catalyzed by nitroxyl radicals
,”
J. Org. Chem.
77
,
3005
3009
(
2012
).
4.
M. R.
Gerhardt
,
L.
Tong
,
R.
Gómez‐Bombarelli
,
Q.
Chen
,
M. P.
Marshak
,
C. J.
Galvin
,
A.
Aspuru‐Guzik
,
R. G.
Gordon
, and
M. J.
Aziz
, “
Anthraquinone derivatives in aqueous flow batteries
,”
Adv. Energy Mater.
7
,
1601488
(
2017
).
5.
X.
Wei
,
W.
Xu
,
M.
Vijayakumar
,
L.
Cosimbescu
,
T.
Liu
,
V.
Sprenkle
, and
W.
Wang
, “
TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries
,”
Adv. Mater.
26
,
7649
7653
(
2014
).
6.
J.
Bitenc
,
N.
Lindahl
,
A.
Vizintin
,
M. E.
Abdelhamid
,
R.
Dominko
, and
P.
Johansson
, “
Concept and electrochemical mechanism of an Al metal anode – organic cathode battery
,”
Energy Storage Mater.
24
,
379
383
(
2020
).
7.
Y.
Li
,
R.
Cao
,
J.
Song
,
L.
Liang
,
T.
Zhai
, and
H.
Xia
, “
Recent advances in coupling carbon-based electrode—Redox electrolyte system
,”
Mater. Res. Bull.
139
,
111249
(
2021
).
8.
E.
Mourad
,
L.
Coustan
,
S. A.
Freunberger
,
A.
Mehdi
,
A.
Vioux
,
F.
Favier
, and
O.
Fontaine
, “
Biredox ionic liquids: Electrochemical investigation and impact of ion size on electron transfer
,”
Electrochim. Acta
206
,
513
523
(
2016
).
9.
E.
Mourad
,
L.
Coustan
,
P.
Lannelongue
,
D.
Zigah
,
A.
Mehdi
,
A.
Vioux
,
S. A.
Freunberger
,
F.
Favier
, and
O.
Fontaine
, “
Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors
,”
Nat. Mater.
16
,
446
453
(
2017
).
10.
C.
Bodin
,
E.
Mourad
,
D.
Zigah
,
S.
Le Vot
,
S. A.
Freunberger
,
F.
Favier
, and
O.
Fontaine
, “
Biredox ionic liquids: New opportunities toward high performance supercapacitors
,”
Faraday Discuss.
206
,
393
404
(
2018
).
11.
K. G.
Reeves
,
A.
Serva
,
G.
Jeanmairet
, and
M.
Salanne
, “
A first-principles investigation of the structural and electrochemical properties of biredox ionic species in acetonitrile
,”
Phys. Chem. Chem. Phys.
22
,
10561
10568
(
2020
).
12.
E.
Stendardo
,
A.
Pedone
,
P.
Cimino
,
M.
Cristina Menziani
,
O.
Crescenzi
, and
V.
Barone
, “
Extension of the AMBER force-field for the study of large nitroxides in condensed phases: An ab initio parameterization
,”
Phys. Chem. Chem. Phys.
12
,
11697
11709
(
2010
).
13.
K.
Goloviznina
,
J. N.
Canongia Lopes
,
M.
Costa Gomes
, and
A. A. H.
Pádua
, “
Transferable, polarizable force field for ionic liquids
,”
J. Chem. Theory Comput.
15
,
5858
5871
(
2019
).
14.
K.
Goloviznina
,
Z.
Gong
,
M. F.
Costa Gomes
, and
A. A. H.
Pádua
, “
Extension of the CL&Pol polarizable force field to electrolytes, protic ionic liquids, and deep eutectic solvents
,”
J. Chem. Theory Comput.
17
,
1606
1617
(
2021
).
15.
M.
Salanne
,
L. J. A.
Siqueira
,
A. P.
Seitsonen
,
P. A.
Madden
, and
B.
Kirchner
, “
From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate systems
,”
Faraday Discuss.
154
,
171
188
(
2012
).
16.
R. J.
Heaton
,
R.
Brookes
,
P. A.
Madden
,
M.
Salanne
,
C.
Simon
, and
P.
Turq
, “
A first-principles description of liquid BeF2 and its mixtures with LiF: 1. Potential development and pure BeF2
,”
J. Phys. Chem. B
110
,
11454
11460
(
2006
).
17.
M. P.
Tosi
and
F. G.
Fumi
, “
Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins–Mayer form
,”
J. Phys. Chem. Solids
25
,
45
52
(
1964
).
18.
F. G.
Fumi
and
M. P.
Tosi
, “
Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—I: The Huggins–Mayer and Pauling form
,”
J. Phys. Chem. Solids
25
,
31
43
(
1964
).
19.
K. T.
Tang
and
J. P.
Toennies
, “
An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients
,”
J. Chem. Phys.
80
,
3726
3741
(
1984
).
20.
A.
Aguado
,
L.
Bernasconi
, and
P. A.
Madden
, “
Interionic potentials from ab initio molecular dynamics: The alkaline earth oxides CaO, SrO, and BaO
,”
J. Chem. Phys.
118
,
5704
(
2003
).
21.
S.
Jahn
,
P. A.
Madden
, and
M.
Wilson
,
Phys. Rev. B
69
,
020106
(
2004
).
22.
A.
Coretti
,
S.
Bonella
, and
G.
Ciccotti
, “
Communication: Constrained molecular dynamics for polarizable models
,”
J. Chem. Phys.
149
,
191102
(
2018
).
23.
F.
Aviat
,
A.
Levitt
,
B.
Stamm
,
Y.
Maday
,
P.
Ren
,
J. W.
Ponder
,
L.
Lagardère
, and
J.-P.
Piquemal
, “
Truncated conjugate gradient: An optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations
,”
J. Chem. Theory Comput.
13
,
180
190
(
2017
).
24.
T. D.
Kuhne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schutt
,
F.
Schiffmann
,
D.
Golze
,
J.
Wilhelm
,
S.
Chulkov
,
M. H.
Bani-Hashemian
,
V.
Weber
,
U.
Borstnik
,
M.
Taillefumier
,
A. S.
Jakobovits
,
A.
Lazzaro
,
H.
Pabst
,
T.
Muller
,
R.
Schade
,
M.
Guidon
,
S.
Andermatt
,
N.
Holmberg
,
G. K.
Schenter
,
A.
Hehn
,
A.
Bussy
,
F.
Belleflamme
,
G.
Tabacchi
,
A.
Gloß
,
M.
Lass
,
I.
Bethune
,
C.J.
Mundy
,
C.
Plessl
,
M.
Watkins
,
J.
VandeVondele
,
M.
Krack
, and
J.
Hutter
, “
CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
25.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
, “
QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
,”
Comput. Phys. Commun.
167
,
103
128
(
2005
).
26.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
, “
CP2K: Atomistic simulations of condensed matter systems
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
15
25
(
2014
).
27.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
1710
(
1996
).
28.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
29.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
30.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
31.
J. P.
Perdew
and
A.
Zunger
, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
5079
(
1981
).
32.
M.
d’Avezac
,
M.
Calandra
, and
F.
Mauri
, “
Density functional theory description of hole-trapping in SiO2: A self-interaction-corrected approach
,”
Phys. Rev. B
71
,
205210
(
2005
).
33.
N.
Marzari
and
D.
Vanderbilt
, “
Maximally localized generalized Wannier functions for composite energy bands
,”
Phys. Rev. B
56
,
12847
12865
(
1997
).
34.
N.
Marzari
,
A.
Mostofi
,
J.
Yates
,
I.
Souzaand
, and
D.
Vanderbilt
, “
Maximally-localised Wannier functions: Theory and applications
,”
Rev. Mod. Phys.
84
,
1419
1475
(
2012
).
35.
E.
Heid
,
P. A.
Hunt
, and
C.
Schröder
, “
Evaluating excited state atomic polarizabilities of chromophores
,”
Phys. Chem. Chem. Phys.
20
,
8554
8563
(
2018
).
36.
E.
Heid
,
A.
Szabadi
, and
C.
Schröder
, “
Quantum mechanical determination of atomic polarizabilities of ionic liquids
,”
Phys. Chem. Chem. Phys.
20
,
10992
10996
(
2018
).
37.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09, Revision E.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
38.
A. J.
Stone
, “
Distributed multipole analysis: Stability of large basis sets
,”
J. Chem. Theory Comput.
1
,
1128
1132
(
2005
).
39.
A. J.
Misquitta
and
A. J.
Stone
, “
Distributed polarizabilities obtained using a constrained density-fitting algorithm
,”
J. Chem. Phys.
124
,
024111
(
2006
).
40.
J. A.
Lemkul
,
J.
Huang
,
B.
Roux
, and
A. D.
MacKerell
, “
An empirical polarizable force field based on the classical drude oscillator model: Development history and recent applications
,”
Chem. Rev.
116
,
4983
5013
(
2016
).
41.
I.-C.
Lin
,
A. P.
Seitsonen
,
I.
Tavernelli
, and
U.
Rothlisberger
, “
Structure and dynamics of liquid water from ab initio molecular dynamics - Comparison of BLYP, PBE, and revPBE density functionals with and without van der Waals Corrections
,”
J. Chem. Theory Comput.
8
,
3902
3910
(
2012
).
42.
A.
Marin-Laflèche
,
M.
Haefele
,
L.
Scalfi
,
A.
Coretti
,
T.
Dufils
,
G.
Jeanmairet
,
S. K.
Reed
,
A.
Serva
,
R.
Berthin
,
C.
Bacon
,
S.
Bonella
,
B.
Rotenberg
,
P. A.
Madden
, and
M.
Salanne
, “
MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems
,”
J. Open Source Software
5
,
2373
(
2020
).
43.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
44.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
45.
D. J.
Evans
and
B. L.
Holian
, “
The Nose–Hoover thermostat
,”
J. Chem. Phys.
83
,
4069
4074
(
1985
).
46.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS—A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
,
2007
2023
(
2011
).
47.
X.
Grabuleda
,
C.
Jaime
, and
P. A.
Kollman
, “
Molecular dynamics simulation studies of liquid acetonitrile: New six-site model
,”
J. Comput. Chem.
21
,
901
908
(
2000
).
48.
A.
Nikitin
and
A.
Lyubartsev
, “
New six-site acetonitrile model for simulations of liquid acetonitrile and its aqueous mixtures
,”
J. Comput. Chem.
28
,
2020
2026
(
2007
).
49.
H. J.
Böhm
,
I. R.
McDonald
, and
P. A.
Madden
, “
An effective pair potential for liquid acetonitrile
,”
Mol. Phys.
49
,
347
360
(
1983
).
50.
W. L.
Jorgensen
and
J. M.
Briggs
, “
Monte Carlo simulations of liquid acetonitrile with a three-site model
,”
Mol. Phys.
63
,
547
558
(
1988
).
51.
E.
Guardia
,
R.
Pinzón
,
J.
Casulleras
,
M.
Orozco
, and
F.
Luque
, “
Comparison of different three-site interaction potentials for liquid acetonitrile
,”
Mol. Simul.
26
,
287
306
(
2001
).
52.
C. D.
Wick
,
J. M.
Stubbs
,
N.
Rai
, and
J. I.
Siepmann
, “
Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine
,”
J. Phys. Chem. B
109
,
18974
18982
(
2005
).
53.
S.
Pothoczki
and
L.
Pusztai
, “
Intermolecular orientations in liquid acetonitrile: New insights based on diffraction measurements and all-atom simulations
,”
J. Mol. Liq.
225
,
160
166
(
2007
).
54.
T.
Takamuku
,
M.
Tabata
,
A.
Yamaguchi
,
J.
Nishimoto
,
M.
Kumamoto
,
H.
Wakita
, and
T.
Yamaguchi
, “
Liquid structure of acetonitrile-water mixtures by X-ray diffraction and infrared spectroscopy
,”
J. Phys. Chem. B
102
,
8880
8888
(
1998
).
55.
E.
Humphreys
,
P.
Allan
,
R.
Welbourn
,
T.
Youngs
,
A.
Soper
,
C.
Grey
, and
S.
Clarke
, “
A neutron diffraction study of the electrochemical double layer capacitor electrolyte tetrapropylammonium bromide in acetonitrile
,”
J. Phys. Chem. B
119
,
15320
15333
(
2015
).
56.
W. E.
Acree
, Jr.
, Infrared Spectra in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, http://webbook.nist.gov.
57.
J.
Caillol
,
D.
Levesque
, and
J.
Weis
, “
Electrical properties of polarizable ionic solutions. I.Theoretical aspects
,”
J. Chem. Phys.
91
,
5544
5554
(
1989
).
58.
J.
Caillol
,
D.
Levesque
, and
J.
Weis
, “
Electrical properties of polarizable ionic solutions. II.Computer simulation results
,”
J. Chem. Phys.
91
,
5555
5566
(
1989
).
59.
M.
Thomas
,
M.
Brehm
,
R.
Fligg
,
P.
Voehringer
, and
B.
Kirchner
, “
Computing vibrational spectra from ab initio molecular dynamics
,”
Phys. Chem. Chem. Phys.
15
,
6608
6622
(
2013
).
60.
V. A.
Koverga
,
O. M.
Korsun
,
O. N.
Kalugin
,
B. A.
Marekha
, and
A.
Idrissi
, “
A new potential model for acetonitrile: Insight into the local structure organization
,”
J. Mol. Liq.
233
,
251
261
(
2017
).
61.
J. G.
McDaniel
, “
Polarization effects in binary [BMIM+][BF4]/1,2-dichloroethane, acetone, acetonitrile, and water electrolytes
,”
J. Phys. Chem. B
122
,
4345
4355
(
2018
).
62.
P.
Howard
and
I.
Wadsö
, “
Enthalpies of vaporization of organic compounds. IV. Alkyl nitriles
,”
Acta Chem. Scand.
24
,
145
149
(
1970
).
63.
D. S.
Venables
and
C. A.
Schmuttenmaer
, “
Far-infrared spectra and associated dynamics in acetonitrile–water mixtures measured with femtosecond THz pulse spectroscopy
,”
J. Chem. Phys.
108
,
4935
4944
(
1998
).
64.
N.
van Meurs
and
G.
Somsen
, “
Excess and apparent molar volumes of mixtures of water and acetonitrile between 0 and 25° C
,”
J. Solution Chem.
22
,
427
436
(
1993
).
65.
J. F.
Coetzee
and
M. W.
Martin
, “
Acetonitrile
,” in
Recommended Methods for Purification of Solvents and Tests for Impurities
, edited by
J.
Coetzee
(
Pergamon
,
1982
), pp.
10
15
.
66.
H.
Kovacs
,
J.
Kowalewski
,
A.
Maliniak
, and
P.
Stilbs
, “
Multinuclear relaxation and NMR self-diffusion study of the molecular dynamics in acetonitrile-chloroform liquid mixtures
,”
J. Phys. Chem.
93
,
962
969
(
1989
).
67.
H.
Shekaari
,
M. T.
Zafarani-Moattar
, and
S. N.
Mirheydari
, “
Density, viscosity, speed of sound, and refractive index of a ternary solution of aspirin, 1-butyl-3-methylimidazolium bromide, and acetonitrile at different temperatures T = (288.15 to 318.15) K
,”
J. Chem. Eng. Data
60
,
1572
1583
(
2015
).
68.
X.-W.
An
and
M.
Månsson
, “
Enthalpies of combustion and formation of acetonitrile
,”
J. Chem. Thermodyn.
15
,
287
293
(
1983
).
69.
M. d C.
Grande
,
M.
García
, and
C. M.
Marschoff
, “
Density and viscosity of anhydrous mixtures of Dimethylsulfoxide with acetonitrile in the range (298.15 to 318.15) K
,”
J. Chem. Eng. Data
54
,
652
658
(
2009
).
70.
M.
Holz
,
X.
Mao
,
D.
Seiferling
, and
A.
Sacco
, “
Experimental study of dynamic isotope effects in molecular liquids: Detection of translation-rotation coupling
,”
J. Chem. Phys.
93
,
669
679
(
1996
).
71.
J.
Baldt
and
H.
Hall
, “
Thermochemistry of strained-ring bridgehead nitriles and esters
,”
J. Am. Chem. Soc.
93
,
140
145
(
1971
).
72.
D. F.
Grant-Taylor
and
D. D.
Macdonald
, “
Thermal pressure and energy–volume coefficients for the acetonitrile + water system
,”
Can. J. Chem.
54
,
2813
2819
(
1976
).
73.
M.
Liang
,
X.
Zhang
,
A.
Kaintz
,
N.
Ernsting
, and
M.
Maroncelli
, “
Solvation dynamics in a prototypical ionic liquid + dipolar aprotic liquid mixture: 1-butyl-3-methylimidazolium tetrafluoroborate + acetonitrile
,”
J. Phys. Chem. B
118
,
1340
1352
(
2014
).
74.
H. A.
Beejapur
,
Q.
Zhang
,
K.
Hu
,
L.
Zhu
,
J.
Wang
, and
Z.
Ye
, “
TEMPO in chemical transformations: From homogeneous to heterogeneous
,”
ACS Catal.
9
,
2777
2830
(
2019
).
75.
S.
Er
,
C.
Suh
,
M. P.
Marshak
, and
A.
Aspuru-Guzik
, “
Computational design of molecules for an all-quinone redox flow battery
,”
Chem. Sci.
6
,
885
893
(
2015
).
76.
M. T.
Huynh
,
C. W.
Anson
,
A. C.
Cavell
,
S. S.
Stahl
, and
S.
Hammes-Schiffer
, “
Quinone 1 e and 2 e/2 H+ reduction potentials: Identification and analysis of deviations from systematic scaling relationships
,”
J. Am. Chem. Soc.
138
,
15903
15910
(
2016
).

Supplementary Material

You do not currently have access to this content.