Our previous study [S. Wang et al., J. Chem. Phys. 153, 184102 (2020)] has shown that in a complex dielectric environment, molecular emission power spectra can be expressed as the product of the lineshape function and the electromagnetic environment factor (EEF). In this work, we focus on EEFs in a vacuum–NaCl–silver system and investigate molecular emission power spectra in the strong exciton–polariton coupling regime. A numerical method based on computational electrodynamics is presented to calculate the EEFs of single-molecule emitters in a dispersive and lossy dielectric environment with arbitrary shapes. The EEFs in the far-field region depend on the detector position, emission frequency, and molecular orientation. We quantitatively analyze the asymptotic behavior of the EFFs in the far-field region and qualitatively provide a physical picture. The concept of EEF should be transferable to other types of spectra in a complex dielectric environment. Finally, our study indicates that molecular emission power spectra cannot be simply interpreted by the lineshape function (quantum dynamics of a molecular emitter), and the effect of the EEFs (photon propagation in a dielectric environment) has to be carefully considered.

1.
T.
Schwartz
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
,
Phys. Rev. Lett.
106
,
196405
(
2011
).
2.
R. F.
Ribeiro
,
L. A.
Martínez-Martínez
,
M.
Du
,
J.
Campos-Gonzalez-Angulo
, and
J.
Yuen-Zhou
,
Chem. Sci.
9
,
6325
(
2018
).
3.
L. A.
Martínez-Martínez
,
R. F.
Ribeiro
,
J.
Campos-González-Angulo
, and
J.
Yuen-Zhou
,
ACS Photonics
5
,
167
(
2018
).
4.
K.
Stranius
,
M.
Hertzog
, and
K.
Börjesson
,
Nat. Commun.
9
,
2273
(
2018
).
5.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
,
Science
363
,
615
(
2019
).
6.
F.
Herrera
and
F. C.
Spano
,
Phys. Rev. Lett.
116
,
238301
(
2016
).
7.
J.
Galego
,
F. J.
Garcia-Vidal
, and
J.
Feist
,
Phys. Rev. Lett.
119
,
136001
(
2017
).
8.
F.
Herrera
and
J.
Owrutsky
,
J. Chem. Phys.
152
,
100902
(
2020
).
9.
T.
Ellenbogen
and
K. B.
Crozier
,
Phys. Rev. B
84
,
161304
(
2011
).
10.
M.
Hertzog
,
M.
Wang
,
J.
Mony
, and
K.
Börjesson
,
Chem. Soc. Rev.
48
,
937
(
2019
).
11.
B.
Xiang
,
R. F.
Ribeiro
,
M.
Du
,
L.
Chen
,
Z.
Yang
,
J.
Wang
,
J.
Yuen-Zhou
, and
W.
Xiong
,
Science
368
,
665
(
2020
).
12.
B.
Xiang
,
R. F.
Ribeiro
,
Y.
Li
,
A. D.
Dunkelberger
,
B. B.
Simpkins
,
J.
Yuen-Zhou
, and
W.
Xiong
,
Sci. Adv.
5
,
eaax5196
(
2019
).
13.
L.
Mewes
,
M.
Wang
,
R. A.
Ingle
,
K.
Börjesson
, and
M.
Chergui
,
Commun. Phys.
3
,
157
(
2020
).
14.
P.
Zeng
,
J.
Cadusch
,
D.
Chakraborty
,
T. A.
Smith
,
A.
Roberts
,
J. E.
Sader
,
T. J.
Davis
, and
D. E.
Gómez
,
Nano Lett.
16
,
2651
(
2016
).
15.
J.
Dintinger
,
S.
Klein
,
F.
Bustos
,
W. L.
Barnes
, and
T. W.
Ebbesen
,
Phys. Rev. B
71
,
035424
(
2005
).
16.
N. S.
Mueller
,
Y.
Okamura
,
B. G. M.
Vieira
,
S.
Juergensen
,
H.
Lange
,
E. B.
Barros
,
F.
Schulz
, and
S.
Reich
,
Nature
583
,
780
(
2020
).
17.
R.
Chikkaraddy
,
B.
de Nijs
,
F.
Benz
,
S. J.
Barrow
,
O. A.
Scherman
,
E.
Rosta
,
A.
Demetriadou
,
P.
Fox
,
O.
Hess
, and
J. J.
Baumberg
,
Nature
535
,
127
(
2016
).
18.
J. A.
Hutchison
,
T.
Schwartz
,
C.
Genet
,
E.
Devaux
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
51
,
1592
(
2012
).
19.
S.
Wang
,
A.
Mika
,
J. A.
Hutchison
,
C.
Genet
,
A.
Jouaiti
,
M. W.
Hosseini
, and
T. W.
Ebbesen
,
Nanoscale
6
,
7243
(
2014
).
20.
R. M. A.
Vergauwe
,
A.
Thomas
,
K.
Nagarajan
,
A.
Shalabney
,
J.
George
,
T.
Chervy
,
M.
Seidel
,
E.
Devaux
,
V.
Torbeev
, and
T. W.
Ebbesen
,
Angew. Chem., Int. Ed.
58
,
15324
(
2019
).
21.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
(
2017
).
22.
C.
Schäfer
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
,
Proc. Natl. Acad. Sci. U. S. A.
116
,
4883
(
2019
).
23.
24.
P.
Vasa
,
W.
Wang
,
R.
Pomraenke
,
M.
Lammers
,
M.
Maiuri
,
C.
Manzoni
,
G.
Cerullo
, and
C.
Lienau
,
Nat. Photonics
7
,
128
(
2013
).
25.
M. S.
Tomaš
and
Z.
Lenac
,
Phys. Rev. A
60
,
2431
(
1999
).
26.
P.
Yao
,
C.
Van Vlack
,
A.
Reza
,
M.
Patterson
,
M. M.
Dignam
, and
S.
Hughes
,
Phys. Rev. B
80
,
195106
(
2009
).
27.
C.
Van Vlack
,
P. T.
Kristensen
, and
S.
Hughes
,
Phys. Rev. B
85
,
075303
(
2012
).
28.
K.
Roy-Choudhury
and
S.
Hughes
,
Phys. Rev. B
92
,
205406
(
2015
).
29.
J.
Sung
,
P.
Kim
,
B.
Fimmel
,
F.
Würthner
, and
D.
Kim
,
Nat. Commun.
6
,
8646
(
2015
).
30.
F. C.
Spano
,
J. Chem. Phys.
116
,
5877
(
2002
).
31.
S.
Wang
,
M.-W.
Lee
,
Y.-T.
Chuang
,
G. D.
Scholes
, and
L.-Y.
Hsu
,
J. Chem. Phys.
153
,
184102
(
2020
).
32.
T.
Gruner
and
D.-G.
Welsch
,
Phys. Rev. A
53
,
1818
(
1996
).
33.
H. T.
Dung
,
L.
Knöll
, and
D.-G.
Welsch
,
Phys. Rev. A
57
,
3931
(
1998
).
34.
W.
Vogel
and
D.
Welsch
,
Quantum Optics
(
Wiley-VCH
,
Berlin
,
2006
).
35.
S.
Scheel
and
S.
Buhmann
,
Acta Phys. Slovaca Rev. Tutorials
58
,
675
(
2008
).
36.
H. T.
Dung
,
L.
Knöll
, and
D.-G.
Welsch
,
Phys. Rev. A
62
,
053804
(
2000
).
37.
S.
Wang
,
G. D.
Scholes
, and
L.-Y.
Hsu
,
J. Chem. Phys.
151
,
014105
(
2019
).
38.
S.
Wang
,
G. D.
Scholes
, and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
11
,
5948
(
2020
).
39.
L.
Novotny
and
B.
Hecht
,
Principle of Nano-Optics
(
Cambridge University Press
,
New York
,
2012
).
40.
R.
Carminati
,
A.
Cazé
,
D.
Cao
,
F.
Peragut
,
V.
Krachmalnicoff
,
R.
Pierrat
, and
Y.
De Wilde
,
Surf. Sci. Rep.
70
,
1
(
2015
).
41.
L.-Y.
Hsu
,
W.
Ding
, and
G. C.
Schatz
,
J. Phys. Chem. Lett.
8
,
2357
(
2017
).
42.
J.-S.
Wu
,
Y.-C.
Lin
,
Y.-L.
Sheu
, and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
9
,
7032
(
2018
).
43.
W.
Ding
,
L.-Y.
Hsu
,
C. W.
Heaps
, and
G. C.
Schatz
,
J. Phys. Chem. C
122
,
22650
(
2018
).
44.
M.-W.
Lee
and
L.-Y.
Hsu
,
J. Phys. Chem. Lett.
11
,
6796
(
2020
).
45.
W.
Ding
,
L.-Y.
Hsu
, and
G. C.
Schatz
,
J. Chem. Phys.
146
,
064109
(
2017
).
46.
Y.
Kane
,
IEEE Trans. Antennas Propag.
14
,
302
(
1966
).
47.
A.
Taflove
,
S. C.
Hagness
, and
M.
Piket-May
,
Computational Electromagnetics: The Finite-Difference Time-Domain Method
(
Elsevier
,
2005
), pp.
629
670
.
48.
J.-M.
Jin
,
The Finite Element Method in Electromagnetic
, 3rd ed. (
John Wiley & Sons
,
2015
).
49.
M. A.
Yurkin
and
A. G.
Hoekstra
,
J. Quant. Spectrosc. Radiat. Transfer
106
,
558
(
2007
).
50.
C. A.
Brebbia
and
R.
Magureanu
,
Eng. Anal.
4
,
178
(
1987
).
51.
D.
Poljak
and
C. A.
Brebbia
,
Boundary Element Methods for Electrical Engineers
(
WIT Press
,
Boston
,
2005
).
52.
Y.
Zhang
,
Y.
Luo
,
Y.
Zhang
,
Y.-J.
Yu
,
Y.-M.
Kuang
,
L.
Zhang
,
Q.-S.
Meng
,
Y.
Luo
,
J.-L.
Yang
,
Z.-C.
Dong
, and
J. G.
Hou
,
Nature
531
,
623
(
2016
).
53.
H.
Imada
,
K.
Miwa
,
M.
Imai-Imada
,
S.
Kawahara
,
K.
Kimura
, and
Y.
Kim
,
Nature
538
,
364
(
2016
).
54.
Y.
Luo
,
G.
Chen
,
Y.
Zhang
,
L.
Zhang
,
Y.
Yu
,
F.
Kong
,
X.
Tian
,
Y.
Zhang
,
C.
Shan
,
Y.
Luo
,
J.
Yang
,
V.
Sandoghdar
,
Z.
Dong
, and
J. G.
Hou
,
Phys. Rev. Lett.
122
,
233901
(
2019
).
55.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
56.
H. H.
Li
,
J. Phys. Chem. Ref. Data
5
,
329
(
1976
).
57.
59.
R. E.
Dale
,
J.
Eisinger
, and
W. E.
Blumberg
,
Biophys. J.
26
,
161
(
1979
).
60.
J. D.
Jackson
,
Classical Electrodynamics
(
John Wiley & Sons
,
1998
).
61.
H.
Ehrenreich
and
H. R.
Philipp
,
Phys. Rev.
128
,
1622
(
1962
).
62.
I.
Thanopulos
,
V.
Yannopapas
, and
E.
Paspalakis
,
Phys. Rev. B
95
,
075412
(
2017
).
63.
K.
Georgiou
,
R.
Jayaprakash
,
A.
Othonos
, and
D.
Lidzey
,
Angew. Chem., Int. Ed.
60
,
16661
(
2021
).
64.
M.
Wang
,
M.
Hertzog
, and
K.
Börjesson
,
Nat. Commun.
12
,
1874
(
2021
).
65.
D.
Green
,
G. A.
Jones
, and
A.
Salam
,
J. Chem. Phys.
153
,
034111
(
2020
).
66.
D.
Wellnitz
,
G.
Pupillo
, and
J.
Schachenmayer
,
J. Chem. Phys.
154
,
054104
(
2021
).
67.
A.
Semenov
and
A.
Nitzan
,
J. Chem. Phys.
150
,
174122
(
2019
).
68.
A.
Mandal
,
T. D.
Krauss
, and
P.
Huo
,
J. Phys. Chem. B
124
,
6321
(
2020
).
69.
N. T.
Phuc
,
P. Q.
Trung
, and
A.
Ishizaki
,
Sci. Rep.
10
,
7318
(
2020
).
70.
A.
Kinkhabwala
,
Z.
Yu
,
S.
Fan
,
Y.
Avlasevich
,
K.
Müllen
, and
W. E.
Moerner
,
Nat. Photonics
3
,
654
(
2009
).
71.
L.-Y.
Hsu
,
H.-C.
Yen
,
M.-W.
Lee
,
Y.-L.
Sheu
,
P.-C.
Chen
,
H.
Dai
, and
C.-C.
Chen
,
Chem
6
,
3396
(
2020
).
72.
Z.
Mei
and
L.
Tang
,
Anal. Chem.
89
,
633
(
2017
).
73.
C.
Ayala-Orozco
,
J. G.
Liu
,
M. W.
Knight
,
Y.
Wang
,
J. K.
Day
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
14
,
2926
(
2014
).
74.
M. B.
Mohamed
,
V.
Volkov
,
S.
Link
, and
M. A.
El-Sayed
,
Chem. Phys. Lett.
317
,
517
(
2000
).
75.
B.
Song
,
Z.
Jiang
,
Z.
Liu
,
Y.
Wang
,
F.
Liu
,
S. B.
Cronin
,
H.
Yang
,
D.
Meng
,
B.
Chen
,
P.
Hu
,
A. M.
Schwartzberg
,
S.
Cabrini
,
S.
Haas
, and
W.
Wu
,
ACS Nano
14
,
14769
(
2020
).
76.
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
,
NIST Handbook of Mathematical Functions
(
Cambridge University Press
,
New York
,
2010
).
77.
W. C.
Chew
,
Waves and Fields in Inhomogeneous Media
(
IEEE
,
New York
,
1995
).
78.
79.
R. L.
Kelly
,
J. Opt. Soc. Am.
62
,
1336
(
1972
).
80.
I. H.
Malitson
,
J. Opt. Soc. Am.
55
,
1205
(
1965
).
You do not currently have access to this content.