We report on the control of π-stacking modes (herringbone vs slipped-stack) and photophysical properties of 9,10-bis((E)-2-(pyridin-4-yl)vinyl)anthracene (BP4VA), an anthracene-based organic semiconductor (OSC), by isosteric cocrystallization (i.e., the replacement of one functional group in a coformer with another of “similar” electronic structure) with 2,4,6-trihalophenols (3X-ph-OH, where X = Cl, Br, and I). Specifically, BP4VA organizes as slipped-stacks when cocrystallized with 3Cl-ph-OH and 3Br-ph-OH, while cocrystallization with 3I-ph-OH results in a herringbone mode. The photoluminescence and molecular frontier orbital energy levels of BP4VA were effectively modulated by the presence of 3X-ph-OH through cocrystallization. We envisage that the cocrystallization of OSCs with minimal changes in cocrystal formers can provide access to convenient structural and property diversification for advanced single-crystal electronics.

1.
X.
Zhang
,
H.
Dong
, and
W.
Hu
,
Adv. Mater.
30
,
1801048
(
2018
).
2.
L.
Sun
 et al.,
Mater. Chem. Front.
4
,
715
(
2020
).
3.
R. M.
Pinto
 et al.,
J. Am. Chem. Soc.
137
,
7104
(
2015
).
4.
Z.-F.
Yao
,
J.-Y.
Wang
, and
J.
Pei
,
Cryst. Growth Des.
18
,
7
(
2018
).
5.
J.-H.
Dou
 et al.,
J. Am. Chem. Soc.
137
,
15947
(
2015
).
6.
J. E.
Anthony
,
Angew. Chem., Int. Ed.
47
,
452
(
2008
).
7.
Y. J.
Bae
 et al.,
J. Chem. Phys.
151
,
044501
(
2019
).
8.
Q.
Miao
 et al.,
J. Am. Chem. Soc.
128
,
1340
(
2006
).
9.
C.
Aumaitre
and
J. F.
Morin
,
Chem. Rec.
19
,
1142
(
2019
).
10.
C.
Wang
 et al.,
Chem. Sci.
11
,
1573
(
2020
).
11.
G.
Campillo-Alvarado
 et al.,
Cryst. Growth Des.
21
,
3143
(
2021
).
13.
K. K.
Ray
 et al.,
Cryst. Growth Des.
20
,
3
(
2020
).
14.
L.
Sun
 et al.,
Adv. Mater.
31
,
1902328
(
2019
).
15.
C.
Gozálvez
 et al.,
Chem. Sci.
10
,
2743
(
2019
).
16.
G.
Campillo-Alvarado
 et al.,
Cryst. Growth Des.
18
,
4416
(
2018
).
17.
G.
Campillo-Alvarado
 et al.,
CrystEngComm
19
,
2983
(
2017
).
18.
G.
Campillo-Alvarado
 et al.,
CrystEngComm
22
,
3563
(
2020
).
19.
G.
Gao
 et al.,
J. Am. Chem. Soc.
142
,
2460
(
2020
).
20.
A. N.
Sokolov
,
T.
Friščić
, and
L. R.
MacGillivray
,
J. Am. Chem. Soc.
128
,
2806
(
2006
).
21.
C.
Wang
 et al.,
Cryst. Growth Des.
10
,
4155
(
2010
).
22.
Y.-Y.
Lai
 et al.,
ACS Omega
3
,
18656
(
2018
).
23.
Y.
Dong
 et al.,
J. Mater. Chem. C
1
,
7554
(
2013
).
24.
S.
Ma
 et al.,
J. Phys. Chem. Lett.
8
,
3068
(
2017
).
25.
D. P.
Ericson
 et al.,
Cryst. Growth Des.
15
,
5744
(
2015
).
26.
K. M.
Hutchins
 et al.,
Supramol. Chem.
30
,
533
(
2018
).
27.
L. T.
Sein
,
Y.
Wei
, and
S. A.
Jansen
,
J. Phys. Chem. A
104
,
11371
(
2000
).
28.
E. R. T.
Tiekink
,
CrystEngComm
23
,
904
(
2021
).
29.
J.
Vainauskas
 et al.,
Chem. Commun.
56
,
15145
(
2020
).
30.
J.-L.
Bredas
,
Mater. Horiz.
1
,
17
(
2014
).
31.
P.
Metrangolo
and
G.
Resnati
,
IUCrJ
1
,
5
(
2014
).
32.
A.
Mukherjee
and
G. R.
Desiraju
,
IUCrJ
1
,
49
(
2014
).
33.
M.
Su
 et al.,
Chem. Eur. J.
26
,
4505
(
2020
).
34.
K. N.
Solov'ev
and
E. A.
Borisevich
,
Phys.-Usp.
48
,
231
(
2005
).
35.
G.
Cavallo
 et al.,
Chem. Rev.
116
,
2478
(
2016
).
36.
S.
d’Agostino
 et al.,
Cryst. Growth Des.
15
,
2039
(
2015
).
37.
G.
Campillo-Alvarado
 et al.,
Cryst. Growth Des.
19
,
2511
(
2019
).
38.
Y.
Han
 et al.,
Cryst. Growth Des.
21
,
1342
(
2021
).
39.
J.
Zhang
 et al.,
Chem. Commun.
49
,
3878
(
2013
).
40.
Y.
Dong
 et al.,
Angew. Chem., Int. Ed.
51
,
10782
(
2012
).

Supplementary Material

You do not currently have access to this content.