Measuring the catalytical activities of single catalysts in the case of high turnover frequency (TOF, realistic conditions) is highly desirable to accurately evaluate the functional heterogeneities among individuals and to understand the catalytic mechanism. Herein, we report a microwell array-based method to in operando measure the photocatalytic kinetics of single CdS nanoparticles (NPs) with high TOF. This was realized by sealing individual CdS NPs into separated micrometer-sized polydimethylsiloxane wells, thus eliminating the diffusion of products among individuals in the case of high concentration of reactants. This method allowed us to monitor the activities of single catalysts with an average TOF up to 2.1 × 105 s−1. Interestingly, two types of catalytical behaviors were revealed during single CdS photocatalysis: a rapid decline in activity for most CdS NPs and an initial increase in activity followed by a decrease for a minor population of individuals. The developed method will facilitate the investigation of catalytic activities of single particles under realistic conditions and hold great potential in the fields of photo/electro-catalysts, enzymes, functional bacteria, and so on.

1.
Z.
Han
,
F.
Qiu
,
R.
Eisenberg
,
P. L.
Holland
, and
T. D.
Krauss
, “
Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst
,”
Science
338
,
1321
1324
(
2012
).
2.
A.
Ajmal
,
I.
Majeed
,
R. N.
Malik
,
H.
Idriss
, and
M. A.
Nadeem
, “
Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview
,”
RSC Adv.
4
,
37003
37026
(
2014
).
3.
C.
Hu
,
J.
Guo
,
J.
Qu
, and
X.
Hu
, “
Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation
,”
Langmuir
23
,
4982
4987
(
2007
).
4.
M. G.
Méndez-Medrano
,
E.
Kowalska
,
B.
Ohtani
,
D.
Bahena Uribe
,
C.
Colbeau-Justin
,
S.
Rau
,
J. L.
Rodríguez-López
, and
H.
Remita
, “
Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production
,”
J. Chem. Phys.
153
,
034705
(
2020
).
5.
A.
Kudo
and
Y.
Miseki
, “
Heterogeneous photocatalyst materials for water splitting
,”
Chem. Soc. Rev.
38
,
253
278
(
2009
).
6.
W.
Wang
, “
Imaging the chemical activity of single nanoparticles with optical microscopy
,”
Chem. Soc. Rev.
47
,
2485
2508
(
2018
).
7.
I. L. C.
Buurmans
and
B. M.
Weckhuysen
, “
Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy
,”
Nat. Chem.
4
,
873
886
(
2012
).
8.
H.
Li
and
H.
Yang
, “
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
,”
J. Chem. Phys.
148
,
123316
(
2018
).
9.
J. B.
Sambur
,
T.-Y.
Chen
,
E.
Choudhary
,
G.
Chen
,
E. J.
Nissen
,
E. M.
Thomas
,
N.
Zou
, and
P.
Chen
, “
Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes
,”
Nature
530
,
77
(
2016
).
10.
H.
Su
,
Y.
Fang
,
F.
Chen
, and
W.
Wang
, “
Monitoring the dynamic photocatalytic activity of single CdS nanoparticles by lighting up H2 nanobubbles with fluorescent dyes
,”
Chem. Sci.
9
,
1448
1453
(
2018
).
11.
T.
Yuan
,
W.
Wei
,
W.
Jiang
, and
W.
Wang
, “
Vertical diffusion of ions within single particles during electrochemical charging
,”
ACS Nano
15
,
3522
3528
(
2021
).
12.
Y.
Fang
,
Z.
Li
,
Y.
Jiang
,
X.
Wang
,
H.-Y.
Chen
,
N.
Tao
, and
W.
Wang
, “
Intermittent photocatalytic activity of single CdS nanoparticles
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
10566
10571
(
2017
).
13.
D.
Jiang
,
Y.
Jiang
,
Z.
Li
,
T.
Liu
,
X.
Wo
,
Y.
Fang
,
N.
Tao
,
W.
Wang
, and
H.-Y.
Chen
, “
Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling
,”
J. Am. Chem. Soc.
139
,
186
192
(
2017
).
14.
S.
Li
,
Y.
Du
,
T.
He
,
Y.
Shen
,
C.
Bai
,
F.
Ning
,
X.
Hu
,
W.
Wang
,
S.
Xi
, and
X.
Zhou
, “
Nanobubbles: An effective way to study gas-generating catalysis on a single nanoparticle
,”
J. Am. Chem. Soc.
139
,
14277
14284
(
2017
).
15.
J.
Yan
,
Z.
Lin
,
C.
Ma
,
Z.
Zheng
,
P.
Liu
, and
G.
Yang
, “
Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level
,”
Nanoscale
8
,
15001
15007
(
2016
).
16.
K. A.
Willets
, “
Super-resolution imaging of SERS hot spots
,”
Chem. Soc. Rev.
43
,
3854
3864
(
2014
).
17.
J.
Reguera
,
J.
Langer
,
D.
Jiménez de Aberasturi
, and
L. M.
Liz-Marzán
, “
Anisotropic metal nanoparticles for surface enhanced Raman scattering
,”
Chem. Soc. Rev.
46
,
3866
3885
(
2017
).
18.
X.
Zhou
,
W.
Xu
,
G.
Liu
,
D.
Panda
, and
P.
Chen
, “
Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level
,”
J. Am. Chem. Soc.
132
,
138
146
(
2010
).
19.
N.
Zou
,
G.
Chen
,
X.
Mao
,
H.
Shen
,
E.
Choudhary
,
X.
Zhou
, and
P.
Chen
, “
Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy
,”
ACS Nano
12
,
5570
5579
(
2018
).
20.
B.
Dong
,
Y.
Pei
,
N.
Mansour
,
X.
Lu
,
K.
Yang
,
W.
Huang
, and
N.
Fang
, “
Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging
,”
Nat. Commun.
10
,
4815
(
2019
).
21.
F. C.
Hendriks
,
F.
Meirer
,
A. V.
Kubarev
,
Z.
Ristanović
,
M. B. J.
Roeffaers
,
E. T. C.
Vogt
,
P. C. A.
Bruijnincx
, and
B. M.
Weckhuysen
, “
Single-molecule fluorescence microscopy reveals local diffusion coefficients in the pore network of an individual catalyst particle
,”
J. Am. Chem. Soc.
139
,
13632
13635
(
2017
).
22.
Z.
Ristanovic
,
J. P.
Hofmann
,
G.
De Cremer
,
A. V.
Kubarev
,
M.
Rohnke
,
F.
Meirer
,
J.
Hofkens
,
M. B. J.
Roeffaers
, and
B. M.
Weckhuysen
, “
Quantitative 3D fluorescence imaging of single catalytic turnovers reveals spatiotemporal gradients in reactivity of zeolite H-ZSM-5 crystals upon steaming
,”
J. Am. Chem. Soc.
137
,
6559
6568
(
2015
).
23.
R.
Han
,
J. W.
Ha
,
C.
Xiao
,
Y.
Pei
,
Z.
Qi
,
B.
Dong
,
N. L.
Bormann
,
W.
Huang
, and
N.
Fang
, “
Geometry-assisted three-dimensional superlocalization imaging of single-molecule catalysis on modular multilayer nanocatalysts
,”
Angew. Chem., Int. Ed.
53
,
12865
12869
(
2014
).
24.
X.
Chen
,
S.
Shen
,
L.
Guo
, and
S. S.
Mao
, “
Semiconductor-based photocatalytic hydrogen generation
,”
Chem. Rev.
110
,
6503
6570
(
2010
).
25.
B.
Rotman
, “
Measurement of activity of single molecules of beta-D-galactosidase
,”
Proc. Natl. Acad. Sci. U. S. A.
47
,
1981
1991
(
1961
).
26.
Q.
Xue
and
E. S.
Yeung
, “
Differences in the chemical-reactivity of individual molecules of an enzyme
,”
Nature
373
,
681
683
(
1995
).
27.
D. B.
Craig
,
E. A.
Arriaga
,
J. C. Y.
Wong
,
H.
Lu
, and
N. J.
Dovichi
, “
Studies on single alkaline phosphatase molecules: Reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation–the death of an enzyme
,”
J. Am. Chem. Soc.
118
,
5245
5253
(
1996
).
28.
M. J.
Shon
and
A. E.
Cohen
, “
Mass action at the single-molecule level
,”
J. Am. Chem. Soc.
134
,
14618
14623
(
2012
).
29.
G.
Henkin
,
D.
Berard
,
F.
Stabile
,
M.
Shayegan
,
J. S.
Leith
, and
S. R.
Leslie
, “
Manipulating and visualizing molecular interactions in customized nanoscale spaces
,”
Anal. Chem.
88
,
11100
11107
(
2016
).
30.
A. C.
Cavell
,
V. K.
Krasecki
,
G.
Li
,
A.
Sharma
,
H.
Sun
,
M. P.
Thompson
,
C. J.
Forman
,
S. Y.
Guo
,
R. J.
Hickman
,
K. A.
Parrish
,
A.
Aspuru-Guzik
,
L.
Cronin
,
N. C.
Gianneschi
, and
R. H.
Goldsmith
, “
Optical monitoring of polymerizations in droplets with high temporal dynamic range
,”
Chem. Sci.
11
,
2647
2656
(
2020
).
31.
R. B.
Liebherr
,
A.
Hutterer
,
M. J.
Mickert
,
F. C.
Vogl
,
A.
Beutner
,
A.
Lechner
,
H.
Hummel
, and
H. H.
Gorris
, “
Three-in-one enzyme assay based on single molecule detection in femtoliter arrays
,”
Anal. Bioanal. Chem.
407
,
7443
7452
(
2015
).
32.
Y.
Rondelez
,
G.
Tresset
,
K. V.
Tabata
,
H.
Arata
,
H.
Fujita
,
S.
Takeuchi
, and
H.
Noji
, “
Microfabricated arrays of femtoliter chambers allow single molecule enzymology
,”
Nat. Biotechnol.
23
,
361
365
(
2005
).
33.
B. K.
Duan
,
P. E.
Cavanagh
,
X.
Li
, and
D. R.
Walt
, “
Ultrasensitive single-molecule enzyme detection and analysis using a polymer microarray
,”
Anal. Chem.
90
,
3091
3098
(
2018
).
34.
L.
Cohen
and
D. R.
Walt
, “
Single-molecule arrays for protein and nucleic acid analysis
,”
Annu. Rev. Anal. Chem.
10
,
345
363
(
2017
).
35.
S.
Levin
,
J.
Fritzsche
,
S.
Nilsson
,
A.
Runemark
,
B.
Dhokale
,
H.
Ström
,
H.
Sundén
,
C.
Langhammer
, and
F.
Westerlund
, “
A nanofluidic device for parallel single nanoparticle catalysis in solution
,”
Nat. Commun.
10
,
4426
(
2019
).
36.
Y.
Du
,
X.
He
,
Y.
Zhan
,
S.
Li
,
Y.
Shen
,
F.
Ning
,
L.
Yan
, and
X.
Zhou
, “
Imaging the site-specific activity and kinetics on a single nanomaterial by microchamber array
,”
ACS Catal.
7
,
3607
3614
(
2017
).
37.
W.
Kong
,
Q.
Li
,
W.
Wang
,
X.
Zhao
,
S.
Jiang
,
T.
Zheng
,
Q.
Zhang
,
W.
Shen
, and
H.
Cui
, “
Rational design of functional materials guided by single particle chemiluminescence imaging
,”
Chem. Sci.
10
,
5444
5451
(
2019
).
38.
K. M.
Mayer
,
J.
Shnipes
,
D.
Davis
, and
D. R.
Walt
, “
Catalytic kinetics of single gold nanoparticles observed via optical microwell arrays
,”
Nanotechnology
26
,
055704
(
2015
).
39.
S.
Luro
,
L.
Potvin-Trottier
,
B.
Okumus
, and
J.
Paulsson
, “
Isolating live cells after high-throughput, long-term, time-lapse microscopy
,”
Nat. Methods
17
,
93
100
(
2020
).
40.
T. P.
Lagus
and
J. F.
Edd
, “
A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics
,”
J. Phys. D: Appl. Phys.
46
,
114005
(
2013
).
41.
Y.
Zhang
,
T.
Chen
,
S.
Alia
,
B. S.
Pivovar
, and
W.
Xu
, “
Single-molecule nanocatalysis shows in situ deactivation of Pt/C electrocatalysts during the hydrogen-oxidation reaction
,”
Angew. Chem., Int. Ed.
55
,
3086
3090
(
2016
).
42.
X.
Ning
and
G.
Lu
, “
Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting
,”
Nanoscale
12
,
1213
1223
(
2020
).
43.
Y.
Xiao
and
W.
Xu
, “
Single-molecule fluorescence imaging of nanocatalysis
,”
Chin. J. Chem.
39
,
1459
1470
(
2021
).
44.
Y.
Deng
, “
Developing a Langmuir-type excitation equilibrium equation to describe the effect of light intensity on the kinetics of the photocatalytic oxidation
,”
Chem. Eng. J.
337
,
220
227
(
2018
).
45.
T.
Hisatomi
,
K.
Takanabe
, and
K.
Domen
, “
Photocatalytic water-splitting reaction from catalytic and kinetic perspectives
,”
Catal. Lett.
145
,
95
108
(
2015
).
46.
B.
Dong
,
Y.
Pei
,
F.
Zhao
,
T. W.
Goh
,
Z.
Qi
,
C.
Xiao
,
K.
Chen
,
W.
Huang
, and
N.
Fang
, “
In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement
,”
Nat. Catal.
1
,
135
140
(
2018
).
47.
Y.
Xiao
,
J.
Hong
,
X.
Wang
,
T.
Chen
,
T.
Hyeon
, and
W.
Xu
, “
Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level
,”
J. Am. Chem. Soc.
142
,
13201
13209
(
2020
).
48.
T.
Chen
,
Y.
Zhang
, and
W.
Xu
, “
Single-molecule nanocatalysis reveals catalytic activation energy of single nanocatalysts
,”
J. Am. Chem. Soc.
138
,
12414
12421
(
2016
).

Supplementary Material

You do not currently have access to this content.