We define a generalized model for three-stranded DNA consisting of two chains of one type and a third chain of a different type. The DNA strands are modeled by random walks on the three-dimensional cubic lattice with different interactions between two chains of the same type and two chains of different types. This model may be thought of as a classical analog of the quantum three-body problem. In the quantum situation, it is known that three identical quantum particles will form a triplet with an infinite tower of bound states at the point where any pair of particles would have zero binding energy. The phase diagram is mapped out, and the different phase transitions are examined using finite-size scaling. We look particularly at the scaling of the DNA model at the equivalent Efimov point for chains up to 10 000 steps in length. We find clear evidence of several bound states in the finite-size scaling. We compare these states with the expected Efimov behavior.

1.
V.
Efimov
,
Phys. Lett. B
33
,
563
(
1970
).
2.
V.
Efimov
,
Sov. J. Nucl. Phys.
12
,
589
(
1971
).
3.
E.
Braaten
and
H.-W.
Hammer
,
Phys. Rep.
428
,
259
(
2006
).
4.
T.
Kraemer
 et al,
Nature
440
,
315
(
2006
).
5.
M.
Zaccanti
 et al,
Nat. Phys.
5
,
586
(
2009
).
6.
R.
Pires
,
J.
Ulmanis
,
S.
Häfner
,
M.
Repp
,
A.
Arias
,
E. D.
Kuhnle
, and
M.
Weidemüller
,
Phys. Rev. Lett.
112
,
250404
(
2014
).
7.
J.
Maji
,
S. M.
Bhattacharjee
,
F.
Seno
, and
A.
Trovato
,
New J. Phys.
12
,
083057
(
2010
).
8.
M. S.
Causo
,
B.
Coluzzi
, and
P.
Grassberger
,
Phys. Rev. E
62
,
3958
(
1999
).
9.
J. D.
Watson
and
F. H. C.
Crick
,
Nature
171
,
737
(
1953
).
10.

For scattering, one may take the limit of scattering length going to infinity. The tuning of the potential to the critical value of the zero-energy bound state is done for cold atoms via Feshbach resonance.

11.
T.
Pal
,
P.
Sadhukhan
, and
S. M.
Bhattacharjee
,
Phys. Rev. Lett.
110
,
028105
(
2013
).
12.
T.
Prellberg
and
J.
Krawczyk
,
Phys. Rev. Lett.
92
,
120602
(
2004
).
13.
M. P.
Nightingale
,
Physica A
83
,
561
(
1976
).
14.
S.
Mukherji
and
S. M.
Bhattacharjee
,
Phys. Rev. E
48
,
3427
(
1993
).
15.
J.
Maji
and
S. M.
Bhattacharjee
,
Phys. Rev. E
86
,
041147
(
2012
).
You do not currently have access to this content.