Coherently controlling the spectral properties of energy-entangled photons is a key component of future entangled two-photon spectroscopy schemes that are expected to provide advantages with respect to classical methods. We present here an experimental setup based on a grating compressor. It allows for the spectral shaping of entangled photons with a sevenfold increase in resolution, compared to previous setups with a prism compressor. We evaluate the performances of the shaper by detecting sum frequency generation in a nonlinear crystal with both classical pulses and entangled photon pairs. The efficiency of both processes is experimentally compared and is in accordance with a simple model relating the classical and entangled two-photon absorption coefficients. Finally, the entangled two-photon shaping capability is demonstrated by implementing an interferometric transfer function.

1.
K. E.
Dorfman
,
F.
Schlawin
, and
S.
Mukamel
, “
Nonlinear optical signals and spectroscopy with quantum light
,”
Rev. Mod. Phys.
88
,
045008
(
2016
).
2.
C.
Couteau
, “
Spontaneous parametric down-conversion
,”
Contemp. Phys.
59
,
291
304
(
2018
).
3.
J.
Gea-Banacloche
, “
Two-photon absorption of nonclassical light
,”
Phys. Rev. Lett.
62
,
1603
1606
(
1989
).
4.
J.
Javanainen
and
P. L.
Gould
, “
Linear intensity dependence of a two-photon transition rate
,”
Phys. Rev. A
41
,
5088
5091
(
1990
).
5.
N. P.
Georgiades
,
E. S.
Polzik
,
K.
Edamatsu
,
H. J.
Kimble
, and
A. S.
Parkins
, “
Nonclassical excitation for atoms in a squeezed vacuum
,”
Phys. Rev. Lett.
75
,
3426
3429
(
1995
).
6.
H.-B.
Fei
,
B. M.
Jost
,
S.
Popescu
,
B. E. A.
Saleh
, and
M. C.
Teich
, “
Entanglement-induced two-photon transparency
,”
Phys. Rev. Lett.
78
,
1679
1682
(
1997
).
7.
D.-I.
Lee
and
T.
Goodson
, “
Entangled photon absorption in an organic porphyrin dendrimer
,”
J. Phys. Chem. B
110
,
25582
25585
(
2006
).
8.
L.
Upton
,
M.
Harpham
,
O.
Suzer
,
M.
Richter
,
S.
Mukamel
, and
T.
Goodson
, “
Optically excited entangled states in organic molecules illuminate the dark
,”
J. Phys. Chem. Lett.
4
,
2046
2052
(
2013
).
9.
B.
Dayan
,
A.
Pe’er
,
A. A.
Friesem
, and
Y.
Silberberg
, “
Two photon absorption and coherent control with broadband down-converted light
,”
Phys. Rev. Lett.
93
,
023005
(
2004
).
10.
F.
Schlawin
,
K.
Dorfman
,
B.
Fingerhut
, and
S.
Mukamel
, “
Manipulation of two-photon-induced fluorescence spectra of chromophore aggregates with entangled photons: A simulation study
,”
Phys. Rev. A
86
,
023851
(
2012
).
11.
F.
Schlawin
,
K. E.
Dorfman
,
B. P.
Fingerhut
, and
S.
Mukamel
, “
Suppression of population transport and control of exciton distributions by entangled photons
,”
Nat. Commun.
4
,
1782
(
2013
).
12.
H.
Oka
, “
Selective two-photon excitation of a vibronic state by correlated photons
,”
J. Chem. Phys.
134
,
124313
(
2011
).
13.
H.
Oka
, “
Control of vibronic excitation using quantum-correlated photons
,”
J. Chem. Phys.
135
,
164304
(
2011
).
14.
B. E. A.
Saleh
,
B. M.
Jost
,
H.-B.
Fei
, and
M. C.
Teich
, “
Entangled-photon virtual-state spectroscopy
,”
Phys. Rev. Lett.
80
,
3483
3486
(
1998
).
15.
J.
Kojima
and
Q.-V.
Nguyen
, “
Entangled biphoton virtual-state spectroscopy of the A2Σ+–X2Π system of OH
,”
Chem. Phys. Lett.
396
,
323
328
(
2004
).
16.
B.
Gu
and
S.
Mukamel
, “
Manipulating two-photon-absorption of cavity polaritons by entangled light
,”
J. Phys. Chem. Lett.
11
,
8177
8182
(
2020
).
17.
A. M.
Weiner
, “
Femtosecond pulse shaping using spatial light modulators
,”
Rev. Sci. Instrum.
71
,
1929
(
2000
).
18.
M.
Rice
and
S. A.
Zhao
,
Optical Control of Molecular Dynamics
(
Wiley
,
2000
), p.
456
.
19.
B.
Dayan
,
A.
Pe’er
,
A. A.
Friesem
, and
Y.
Silberberg
, “
Nonlinear interactions with an ultrahigh flux of broadband entangled photons
,”
Phys. Rev. Lett.
94
,
043602
(
2005
).
20.
A.
Pe’er
,
B.
Dayan
,
A. A.
Friesem
, and
Y.
Silberberg
, “
Temporal shaping of entangled photons
,”
Phys. Rev. Lett.
94
,
073601
(
2005
).
21.
Y.
Shih
,
An Introduction to Quantum Optics: Photon and Biphoton Physics
(CRC Press, 2021).
22.
Y.
Shih
, “
Entangled biphoton source—Property and preparation
,”
Rep. Prog. Phys.
66
,
1009
1044
(
2003
).
23.
X.
Baillard
,
A.
Gauguet
,
S.
Bize
,
P.
Lemonde
,
P.
Laurent
,
A.
Clairon
, and
P.
Rosenbusch
, “
Interference-filter-stabilized external-cavity diode lasers
,”
Opt. Commun.
266
,
609
613
(
2006
).
24.
F.
Zäh
,
M.
Halder
, and
T.
Feurer
, “
Amplitude and phase modulation of time-energy entangled two-photon states
,”
Opt. Express
16
,
16452
16458
(
2008
).
25.
B.
Bessire
,
C.
Bernhard
,
T.
Feurer
, and
A.
Stefanov
, “
Versatile shaper-assisted discretization of energy-time entangled photons
,”
New J. Phys.
16
,
033017
(
2014
).
26.
O. E.
Martinez
, “
Grating and prism compressors in the case of finite beam size
,”
J. Opt. Soc. Am. B
3
,
929
(
1986
).
27.
B.
Dayan
, “
Theory of two-photon interactions with broadband down-converted light and entangled photons
,”
Phys. Rev. A
76
,
043813
(
2007
).
28.
B.
Eckmann
,
B.
Bessire
,
M.
Unternährer
,
L.
Gasparini
,
M.
Perenzoni
, and
A.
Stefanov
, “
Characterization of space-momentum entangled photons with a time resolving CMOS SPAD array
,”
Opt. Express
28
,
31553
31571
(
2020
).
29.
G. S.
He
,
L.-S.
Tan
,
Q.
Zheng
, and
P. N.
Prasad
, “
Multiphoton absorbing materials: Molecular designs, characterizations, and applications
,”
Chem. Rev.
108
,
1245
1330
(
2008
).
30.
O.
Roslyak
and
S.
Mukamel
, “
Multidimensional pump-probe spectroscopy with entangled twin-photon states
,”
Phys. Rev. A
79
,
063409
(
2009
).
31.
T.
Feurer
, “
Laser beam propagation generation and propagation of customized light
,” in
Laser Beam Propagation: Generation and Propagation of Customized Light
, edited by
A.
Forbes
(
CRC Press
,
2014
), pp.
77
112
.
You do not currently have access to this content.