Long chain molecules can be entropically compacted in a crowded medium. We study the compaction transition of a heterogeneous polymer with ring topology by crowding effects in a free or confined space. For this, we use molecular dynamics simulations in which the effects of crowders are taken into account through effective interactions between chain segments. Our parameter choices are inspired by the Escherichia coli chromosome. The polymer consists of small and big monomers; the big monomers dispersed along the backbone are to mimic the binding of RNA polymerases. Our results show that the compaction transition is a two-step process: initial compaction induced by the association (clustering) of big monomers followed by a gradual overall compaction. They also indicate that cylindrical confinement makes the initial transition more effective; for representative parameter choices, the initial compaction accounts for about 60% reduction in the chain size. Our simulation results support the view that crowding promotes clustering of active transcription units into transcription factories.

1.
R. J.
Ellis
, “
Macromolecular crowding: Obvious but underappreciated
,”
Trends Biochem. Sci.
26
,
597
604
(
2001
).
2.
S. B.
Zimmerman
and
A. P.
Minton
, “
Macromolecular crowding: Biochemical, biophysical, and physiological consequences
,”
Annu. Rev. Biophys. Biomol. Struct.
22
,
27
65
(
1993
).
3.
H.-X.
Zhou
,
G.
Rivas
, and
A. P.
Minton
, “
Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences
,”
Annu. Rev. Biophys.
37
,
375
397
(
2008
).
4.
H.-X.
Zhou
, “
Influence of crowded cellular environments on protein folding, binding, and oligomerization: Biological consequences and potentials of atomistic modeling
,”
FEBS Lett.
587
,
1053
1061
(
2013
).
5.
H. N. W.
Lekkerkerker
and
R.
Tuinier
,
Colloids and the Depletion Interaction
, Lecture Notes in Physics Vol. 833 (
Springer
,
2011
).
6.
S.
Jun
, “
Chromosome, cell cycle, and entropy
,”
Biophys. J.
108
,
785
786
(
2015
).
7.
D. S.
Goodsell
, “
Miniseries: Illustrating the machinery of life: Escherichia coli
,”
Biochem. Mol. Biol. Educ.
37
,
325
332
(
2009
).
8.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
9.
S.
Asakura
and
F.
Oosawa
, “
Interaction between particles suspended in solutions of macromolecules
,”
J. Polym. Sci.
33
,
183
192
(
1958
).
10.
D.
Marenduzzo
,
C.
Micheletti
, and
P. R.
Cook
, “
Entropy-driven genome organization
,”
Biophys. J.
90
,
3712
3721
(
2006
).
11.
D.
Marenduzzo
,
I.
Faro-Trindade
, and
P. R.
Cook
, “
What are the molecular ties that maintain genomic loops?
,”
Trends Genet.
23
,
126
133
(
2007
).
12.
J. A.
Valkenburg
and
C. L.
Woldringh
, “
Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry
,”
J. Bacteriol.
160
,
1151
1157
(
1984
).
13.
C. L.
Woldringh
and
T.
Odijk
, in
Organization of the Prokaryotic Genome
, edited by
R. L.
Charlebois
(
ASM Press
,
Washington, DC
,
1999
).
14.
J.
Stavans
and
A.
Oppenheim
, “
DNA-protein interactions and bacterial chromosome architecture
,”
Phys. Biol.
3
,
R1
R10
(
2006
).
15.
J.
Pelletier
,
K.
Halvorsen
,
B.-Y.
Ha
,
R.
Paparcone
,
S. J.
Sandler
,
C. L.
Woldringh
,
W. P.
Wong
, and
S.
Jun
, “
Physical manipulation of the Escherichia coli chromosome reveals its soft nature
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
E2649
E2656
(
2012
).
16.
C.
Jeon
,
C.
Hyeon
,
Y.
Jung
, and
B.-Y.
Ha
, “
How are molecular crowding and the spatial organization of a biopolymer interrelated
,”
Soft Matter
12
,
9786
9796
(
2016
).
17.
C.
Jeon
,
Y.
Jung
, and
B.-Y.
Ha
, “
Effects of molecular crowding and confinement on the spatial organization of a biopolymer
,”
Soft Matter
12
,
9436
9450
(
2016
).
18.
C.
Jeon
,
Y.
Jung
, and
B.-Y.
Ha
, “
A ring-polymer model shows how macromolecular crowding controls chromosome-arm organization in Escherichia coli
,”
Sci. Rep.
7
,
11896-1
11896-10
(
2017
).
19.
J.
Kim
,
C.
Jeon
,
H.
Jeong
,
Y.
Jung
, and
B.-Y.
Ha
, “
A polymer in a crowded and confined space: Effects of crowder size and poly-dispersity
,”
Soft Matter
11
,
1877
1888
(
2015
).
20.
T. N.
Shendruk
,
M.
Bertrand
,
H. W.
de Haan
,
J. L.
Harden
, and
G. W.
Slater
, “
Simulating the entropic collapse of coarse-grained chromosomes
,”
Biophys. J.
108
,
810
820
(
2015
).
21.
T. N.
Shendruk
,
M.
Bertrand
,
J. L.
Harden
,
G. W.
Slater
, and
H. W.
de Haan
, “
Coarse-grained molecular dynamics simulations of depletion-induced interactions for soft matter systems
,”
J. Chem. Phys.
141
,
244910-1
244910-11
(
2014
).
22.
H.
Kang
,
P. A.
Pincus
,
C.
Hyeon
, and
D.
Thirumalai
, “
Effects of macromolecular crowding on the collapse of biopolymers
,”
Phys. Rev. Lett.
114
,
068303-1
068303-5
(
2015
).
23.
J. S.
Kim
and
I.
Szleifer
, “
Depletion effect on polymers induced by small depleting spheres
,”
J. Phys. Chem.
114
,
20864
20869
(
2010
).
24.
R.
de Vries
, “
DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins
,”
Biochimie
92
,
1715
1721
(
2010
).
25.
S.
Cunha
,
C. L.
Woldringh
, and
T.
Odijk
, “
Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids
,”
J. Struct. Biol.
136
,
53
66
(
2001
).
26.
M. P.
Taylor
,
C.
Vinci
, and
R.
Suzuki
, “
Effects of macromolecular crowding on the folding of a polymer chain: A Wang–Landau simulation study
,”
J. Chem. Phys.
153
,
174901-1
174901-11
(
2020
).
27.
M.
Adams
,
Z.
Dogic
,
S. L.
Keller
, and
S.
Fraden
, “
Entropically driven microphase transitions in mixtures of colloidal rods and spheres
,”
Nature
393
,
349
352
(
1998
).
28.
H. N. W.
Lekkerkerker
and
A.
Stroobants
, “
Ordering entropy
,”
Nature
393
,
305
307
(
1998
).
29.
B.
Youngren
,
H. J.
Nielsen
,
S.
Jun
, and
S.
Austin
, “
The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer
,”
Genes Dev.
28
,
71
84
(
2014
).
30.
R. K. W.
Spencer
and
B.-Y.
Ha
, “
How a polymer brush interacts with inclusions and alters their interaction
,”
Macromolecules
54
,
1304
1313
(
2021
).
31.
A. M.
Tom
,
W. K.
Kim
, and
C.
Hyeon
, “
Polymer brush-induced depletion interactions and clustering of membrane proteins
,”
J. Chem. Phys.
154
,
214901-1
214901-9
(
2021
).
32.
D. J.
Jin
and
J. E.
Cabrera
, “
Coupling the distribution of RNA polymerase to global gene regulation and the dynamic structure of the bacterial nucleoid in Escherichia coli
,”
J. Struct. Biol.
156
,
284
291
(
2006
).
33.
D. J.
Jin
,
C.
Cagliero
, and
Y. N.
Zhou
, “
Role of RNA polymerase and transcription in the organization of the bacterial nucleoid
,”
Chem. Rev.
113
,
8662
8682
(
2013
).
34.
B.-Y.
Ha
and
Y.
Jung
, “
Polymers under confinement: Single polymers, how they interact, and as model chromosomes
,”
Soft Matter
11
,
2333
2352
(
2015
).
35.
C. R.
Calladine
,
H.
Drew
,
B.
Luisi
, and
A.
Travers
,
Understanding DNA: The Molecule and How it Works
, 3rd ed. (
Academic Press
,
2004
).
36.
R.
Milo
and
R.
Phillips
,
Cell Biology by the Numbers
(
Garland Science
,
2015
).
37.
C.
Bustamante
,
J. F.
Marko
,
E. D.
Siggia
, and
S.
Smith
, “
Entropic elasticity of λ-phage DNA
,”
Science
265
,
1599
1600
(
1994
).
38.
T.
Romantsov
,
I.
Fishov
, and
O.
Krichevsky
, “
Internal structure and dynamics of isolated Escherichia coli nucleoids assessed by fluorescence correlation spectroscopy
,”
Biophys. J.
92
,
2875
2884
(
2007
).
39.
P. G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University
,
1979
).
40.
L. E.
Reichl
,
A Modern Course in Statistical Physics
, 2nd ed. (
John Wiley & Sons
,
1998
).
41.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
, “
Statistical mechanics of rigid spheres
,”
J. Chem. Phys.
31
,
369
380
(
1959
).
42.
E.
Thiele
, “
Equation of state for hard spheres
,”
J. Chem. Phys.
39
,
474
479
(
1963
).
43.
M. S.
Wertheim
, “
Exact solution of the Percus-Yevick integral equation for hard spheres
,”
Phys. Rev. Lett.
10
,
321
323
(
1963
).
44.
N. F.
Carnahan
and
K. E.
Starling
, “
Equation of state for nonattracting rigid spheres
,”
J. Chem. Phys.
51
,
635
636
(
1969
).
45.
J. K.
Percus
and
G. J.
Yevick
, “
Analysis of classical statistical mechanics by means of collective coordinates
,”
Phys. Rev.
110
,
1
13
(
1958
).
46.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
, 4th ed. (
Academic Press
,
2013
).
47.
N. M.
Toan
,
D.
Marenduzzo
,
P. R.
Cook
, and
C.
Micheletti
, “
Depletion effects and loop formation in self-avoiding polymers
,”
Phys. Rev. Lett.
97
,
178302-1
178302-4
(
2006
).
48.
R. C.
Chatelier
and
A. P.
Minton
, “
Adsorption of globular proteins on locally planar surfaces: Models for the effect of excluded surface area and aggregation of adsorbed protein on adsorption equilibria
,”
Biophys. J.
71
,
2367
2374
(
1996
).
49.
A. J.
Guseman
,
G. M.
Perez Goncalves
,
S. L.
Speer
,
G. B.
Young
, and
G. J.
Pielak
, “
Protein shape modulates crowding effects
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
10965
10970
(
2018
).
50.
C. M.
Miller
,
Y. C.
Kim
, and
J.
Mittal
, “
Protein composition determines the effect of crowding on the properties of disordered proteins
,”
Biophys. J.
111
,
28
37
(
2016
).
51.
K. A.
Sharp
, “
Analysis of the size dependence of macromolecular crowding shows that smaller is better
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
7990
7995
(
2015
).
52.
J. C.
Stachowiak
,
E. M.
Schmid
,
C. J.
Ryan
,
H. S.
Ann
,
D. Y.
Sasaki
,
M. B.
Sherman
,
P. L.
Geissler
,
D. A.
Fletcher
, and
C. C.
Hayden
, “
Membrane bending by protein–protein crowding
,”
Nat. Cell Biol.
14
,
944
949
(
2012
).
53.
K.
Kremer
and
G. S.
Grest
, “
Dynamics of entangled linear polymer melts: A molecular-dynamics simulation
,”
J. Chem. Phys.
92
,
5057
5086
(
1990
).
54.
G. S.
Grest
and
K.
Kremer
, “
Molecular dynamics simulation for polymers in the presence of a heat bath
,”
Phys. Rev. A
33
,
3628
3631
(
1986
).
55.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
), also see http://lammps.sandia.gov.
56.
K. A.
Dill
,
S.
Bromberg
,
K.
Yue
,
K. M.
Fiebig
,
D. P.
Yee
,
P. D.
Thomas
, and
H. S.
Chan
, “
Principles of protein folding—A perspective from simple exact models
,”
Protein Sci.
4
,
561
602
(
1995
).
57.
U.
Endesfelder
,
K.
Finan
,
S. J.
Holden
,
P. R.
Cook
,
A. N.
Kapanidis
, and
M.
Heilemann
, “
Multiscale spatial organization of RNA polymerase in Escherichia coli
,”
Biophys. J.
105
,
172
181
(
2013
).
58.
V. A.
Ivanov
,
W.
Paul
, and
K.
Binder
, “
Finite chain length effects on the coil-globule transition of stiff-chain macromolecules: A Monte Carlo simulation
,”
J. Chem. Phys.
109
,
5659
5669
(
1998
).
You do not currently have access to this content.