The pure rotational spectrum of thiazole (c-C3H3NS, Cs) has been studied in the millimeter-wave region from 130 to 375 GHz. Nearly 4800 newly measured rotational transitions for the ground vibrational state of the main isotopologue were combined with previously reported measurements and least-squares fit to a complete sextic Hamiltonian. Transitions for six singly substituted heavy-atom isotopologues (13C, 15N, 33S, 34S) were observed at natural abundance and likewise fit. Several deuterium-enriched samples were prepared, which gave access to the rotational spectra of 16 additional isotopologues, 14 of which had not been previously studied. The rotational spectra of each isotopologue were fit to A- and S-reduced distorted-rotor Hamiltonians in the Ir representation. The experimental values of the ground-state rotational constants (A0, B0, and C0) from each isotopologue were converted to determinable constants (A0″, B0″, and C0″), which were corrected for effects of vibration–rotation interactions and electron-mass distributions using coupled-cluster singles, doubles, and perturbative triples calculations [CCSD(T)/cc-pCVTZ]. The moments of inertia from the resulting constants (Ae, Be, and Ce) of 24 isotopologues were used to determine the precise semi-experimental equilibrium structure (reSE) of thiazole. As a basis for comparison, a purely theoretical equilibrium structure was estimated by an electronic structure calculation [CCSD(T)/cc-pCV5Z] that was subsequently corrected for extrapolation to the complete basis set, electron correlation beyond CCSD(T), relativistic effects, and the diagonal Born–Oppenheimer correction. The precise reSE structure is compared to the resulting “best theoretical estimate” structure. Some, but not all, of the best theoretical re structural parameters fall within the narrow statistical limits (2σ) of the reSE results. The possible origin of the discrepancies between the best theoretical estimate re and semi-empirical reSE structures is discussed.

1.
L.
Bettendorff
, “
Thiamine
,” in
Handbook of Vitamins
, 5th ed., edited by
J.
Zempleni
,
J. W.
Suttie
,
J. F.
Gregory
 III
, and
P. J.
Stover
(
CRC Press
,
2014
).
2.
M. T.
Chhabria
,
S.
Patel
,
P.
Modi
, and
P. S.
Brahmkshatriya
, “
Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives
,”
Curr. Top. Med. Chem.
16
,
2841
(
2016
).
3.
B. A.
McGuire
,
A. M.
Burkhardt
,
S.
Kalenskii
,
C. N.
Shingledecker
,
A. J.
Remijan
,
E.
Herbst
, and
M. C.
McCarthy
, “
Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium
,”
Science
359
,
202
205
(
2018
).
4.
M. C.
McCarthy
,
K. L. K.
Lee
,
R. A.
Loomis
,
A. M.
Burkhardt
,
C. N.
Shingledecker
,
S. B.
Charnley
,
M. A.
Cordiner
,
E.
Herbst
,
S.
Kalenskii
,
E. R.
Willis
,
C.
Xue
,
A. J.
Remijan
, and
B. A.
McGuire
, “
Interstellar detection of the highly polar five-membered ring cyanocyclopentadiene
,”
Nat. Astron.
5
,
176
180
(
2021
).
5.
B. A.
McGuire
,
R. A.
Loomis
,
A. M.
Burkhardt
,
K. L. K.
Lee
,
C. N.
Shingledecker
,
S. B.
Charnley
,
I. R.
Cooke
,
M. A.
Cordiner
,
E.
Herbst
,
S.
Kalenskii
,
M. A.
Siebert
,
E. R.
Willis
,
C.
Xue
,
A. J.
Remijan
, and
M. C.
McCarthy
, “
Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering
,”
Science
371
,
1265
1269
(
2021
).
6.
See https://cdms.astro.uni-koeln.de/classic/molecules for the Cologne Database for Molecular Spectroscopy.
7.
B.
Bak
,
D.
Christensen
,
L.
Hansen-Nygaard
, and
J.
Rastrup-Andersen
, “
Microwave spectrum and dipole moment of thiazole
,”
J. Mol. Spectrosc.
9
,
222
224
(
1962
).
8.
L.
Nygaard
,
E.
Asmussen
,
J. H.
Høg
,
R. C.
Maheshwari
,
C. H.
Nielsen
,
I. B.
Petersen
,
J.
Rastrup-Andersen
, and
G. O.
Sørensen
, “
Microwave spectra of isotopic thiazoles. Molecular structure 14N quadrupole coupling constants of thiazole
,”
J. Mol. Struct.
8
,
225
233
(
1971
).
9.
I. N.
Bojesen
,
J. H.
Høg
,
J. T.
Nielsen
,
I. B.
Petersen
, and
K.
Schaumburg
, “
Preparation, mass and NMR spectra of some isotopic thiazoles
,”
Acta Chem. Scand.
25
,
2739
2748
(
1971
).
10.
J. A.
Braun
and
J.
Metzger
, “
Isotopic synthesis of thiazole
,”
Caplus An
411446
,
503
510
(
1967
).
11.
P.
Roussel
and
J.
Metzger
, “
Synthesis and infrared spectral study of the deuteriothiazoles
,”
Bull. Soc. Chim. Fr.
1962
,
2075
2078
.
12.
W. F.
White
, “
Microwave spectra of some sulfur and nitrogen compounds
,” NASA Technical Note NASA TN D-7450,
National Aeronautics and Space Administration
,
Washington, DC
,
1974
.
13.
J.
Wiese
and
D. H.
Sutter
, “
The rotational Zeeman effect of thiazole and isothiazole
,”
Z. Naturforsch., A
35
,
712
722
(
1980
).
14.
U.
Kretschmer
and
H.
Dreizler
, “
33S nuclear hyperfine structure in the rotational spectrum of thiazole
,”
Z. Naturforsch., A
48
,
1219
1222
(
1993
).
15.
B. P.
van Eijck
, “
Reformulation of quartic centrifugal distortion Hamiltonian
,”
J. Mol. Spectrosc.
53
,
246
249
(
1974
).
16.
F.
Hegelund
,
R. W.
Larsen
, and
M. H.
Palmer
, “
The vibrational spectrum of thiazole between 600 and 1400 cm−1 revisited: A combined high-resolution infrared and theoretical study
,”
J. Mol. Spectrosc.
244
,
63
78
(
2007
).
17.
S. F.
Bone
,
B. A.
Smart
,
H.
Gierens
,
C. A.
Morrison
,
P. T.
Brain
, and
D. W. H.
Rankin
, “
The molecular structure of thiazole, determined by the combined analysis of gas-phase electron diffraction (GED) data and rotational constants and by ab initio calculations
,”
Phys. Chem. Chem. Phys.
1
,
2421
2426
(
1999
).
18.
E.
Penocchio
,
M.
Mendolicchio
,
N.
Tasinato
, and
V.
Barone
, “
Structural features of the carbon–sulfur chemical bond: A semi-experimental perspective
,”
Can. J. Chem.
94
,
1065
1076
(
2016
).
19.
M. A.
Zdanovskaia
,
B. J.
Esselman
,
R. C.
Woods
, and
R. J.
McMahon
, “
The 130–370 GHz rotational spectrum of phenyl isocyanide (C6H5NC)
,”
J. Chem. Phys.
151
,
024301
(
2019
).
20.
B. J.
Esselman
,
B. K.
Amberger
,
J. D.
Shutter
,
M. A.
Daane
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites
,”
J. Chem. Phys.
139
,
224304
(
2013
).
21.
Z.
Kisiel
,
L.
Pszczółkowski
,
B. J.
Drouin
,
C. S.
Brauer
,
S.
Yu
,
J. C.
Pearson
,
I. R.
Medvedev
,
S.
Fortman
, and
C.
Neese
, “
Broadband rotational spectroscopy of acrylonitrile: Vibrational energies from perturbations
,”
J. Mol. Spectrosc.
280
,
134
144
(
2012
).
22.
Z.
Kisiel
,
L.
Pszczółkowski
,
I. R.
Medvedev
,
M.
Winnewisser
,
F. C.
De Lucia
, and
E.
Herbst
, “
Rotational spectrum of trans-trans diethyl ether in the ground and three excited vibrational states
,”
J. Mol. Spectrosc.
233
,
231
243
(
2005
).
23.
Z.
Kisiel
, “
Assignment and Analysis of Complex Rotational Spectra
,” in
Spectroscopy from Space
, edited by
J.
Demaison
,
K.
Sarka
, and
E. A.
Cohen
(
Kluwer Academic Publishers: Dordrecht
,
2001
; pp. 91–106); http://www.ifpan.edu.pl/~kisiel/prospe.htm.
24.
J. F.
Stanton
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, “
CFOUR, coupled-cluster techniques for computational chemistry
,” with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
S.
Blaschke
,
Y. J.
Bomble
,
S.
Burger
,
O.
Christiansen
,
D.
Datta
,
F.
Engel
,
R.
Faber
,
J.
Greiner
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
K.
Klein
,
G. M.
Kopper
,
W. J.
Lauderdale
,
F.
Lipparini
,
T.
Metzroth
,
L. A.
Mück
,
T.
Nottoli
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. Aa.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
, http://www.cfour.de.
25.
Z. N.
Heim
,
B. K.
Amberger
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Molecular structure determination: Equilibrium structure of pyrimidine (m-C4H4N2) from rotational spectroscopy (reSE) and high-level ab initio calculation (re) agree within the uncertainty of experimental measurement
,”
J. Chem. Phys.
152
,
104303
(
2020
).
26.
A. N.
Owen
,
M. A.
Zdanovskaia
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Semi-experimental equilibrium (reSE) and theoretical structures of pyridazine (o-C4H4N2)
” (submitted).
27.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
28.
See http://www.webmo.net for WebMO Enterprise, version 19.0, WebMO LLC, Madison, WI,
2019
; accessed August 2019.
29.
B. J.
Esselman
,
M. A.
Zdanovskaia
,
T. K.
Adkins
,
B. E.
Billinghurst
,
J.
Zhao
,
R. C.
Woods
, and
R. J.
McMahon
, “
Millimeter-wave and infrared spectroscopy of thiazole (c-C3H3NS) in its ground state and lowest-energy vibrationally excited states (ν18, ν17, and ν13)
,”
J. Mol. Spectrosc.
379
,
111493
(
2021
).
30.
R.
Venkatasubramanian
and
S. L. N. G.
Krishnamachari
, “
Synthesis of (2-d)-thiazole and (2-d)-oxazole and formation of pyrazine from reaction of oxazole
,”
Indian J. Chem., Sect. B
29B
,
562
563
(
1990
).
31.
V. L.
Orr
,
Y.
Ichikawa
,
A. R.
Patel
,
S. M.
Kougias
,
K.
Kobayashi
,
J. F.
Stanton
,
B. J.
Esselman
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure determination of thiophene (c-C4H4S) by rotational spectroscopy—Structure of a five-membered heterocycle containing a third row atom
,”
J. Chem. Phys.
154
,
244310
(
2021
).
32.
J. C.
Kromann
,
J. H.
Jensen
,
M.
Kruszyk
,
M.
Jessing
, and
M.
Jørgensen
, “
Fast and accurate prediction of the regioselectivity of electrophilic aromatic substitution reactions
,”
Chem. Sci.
9
,
660
665
(
2018
).
33.
V.
Ji Ram
,
A.
Sethi
,
M.
Nath
, and
R.
Pratap
, “
Five-membered heterocycles
,” in
The Chemistry of Heterocycles
, edited by
V.
Ji Ram
,
A.
Sethi
,
M.
Nath
, and
R.
Pratap
(
Elsevier
,
2019
), Chap. 5, pp.
149
478
.
34.
J. V.
Metzger
,
E. J.
Vincent
,
J.
Chouteau
, and
G.
Mille
, “
Properties and reactions of thiazole
,”
Chem. Heterocycl. Compd.
34
,
5
164
(
1979
).
35.
R. A.
Coburn
,
J. M.
Landesberg
,
D. S.
Kemp
, and
R. A.
Olofson
, “
An addition-elimination mechanism for C–H/C–D exchange in thiazole
,”
Tetrahedron
26
,
685
692
(
1970
).
36.
H. A.
Staab
,
M.-T.
Wu
,
A.
Mannschreck
, and
G.
Schwalbach
, “
H/D-austausch bei azolen und azolium-salzen
,”
Tetrahedron Lett.
5
,
845
848
(
1964
).
37.
C. J.
Moody
and
J. C. A.
Hunt
, “
Synthesis of virenamide B, a cytotoxic thiazole-containing peptide
,”
J. Org. Chem.
64
,
8715
8717
(
1999
).
38.
D.
Kikelj
and
U.
Urleb
, in
Category 2, Hetarenes and Related Ring Systems
, edited by
E.
Schaumann
(
Georg Thieme Verlag
,
Stuttgart
,
2002
), Vol. 11.
39.
J. F.
Arenas
,
J.
Perez-Peña
, and
M.
Gonzalez-Davila
, “
Vibrational spectra and thermodynamic properties of thiazole, 2-aminothiazole, 2-amino-[2H]-thiazole and 2-amino-[2H2]-thiazole
,”
Collect. Czech. Chem. Commun.
54
,
28
41
(
1989
).
40.
J.
Kraitchman
, “
Determination of molecular structure from microwave spectroscopic data
,”
Am. J. Phys.
21
,
17
24
(
1953
).
41.
B. K.
Amberger
,
B. J.
Esselman
,
J. F.
Stanton
,
R. C.
Woods
, and
R. J.
McMahon
, “
Precise equilibrium structure determination of hydrazoic acid (HN3) by millimeter-wave spectroscopy
,”
J. Chem. Phys.
143
,
104310
(
2015
).
42.
C.
Puzzarini
,
J.
Bloino
,
N.
Tasinato
, and
V.
Barone
, “
Accuracy and interpretability: The devil and the holy grail. New routes across old boundaries in computational spectroscopy
,”
Chem. Rev.
119
,
8131
8191
(
2019
).
43.
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kállay
, and
J.
Gauss
, “
Coupled-cluster methods including noniterative corrections for quadruple excitations
,”
J. Chem. Phys.
123
,
054101
(
2005
).
44.
K. G.
Dyall
, “
Interfacing relativistic and nonrelativistic methods. II. Investigation of a low-order approximation
,”
J. Chem. Phys.
109
,
4201
4208
(
1998
).
45.
W.
Liu
and
D.
Peng
, “
Exact two-component Hamiltonians revisited
,”
J. Chem. Phys.
131
,
031104
(
2009
).
46.
L.
Cheng
and
J.
Gauss
, “
Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian
,”
J. Chem. Phys.
135
,
084114
(
2011
).
47.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
1954
).

Supplementary Material

You do not currently have access to this content.