Here, we present a concise model that can predict the photoluminescent properties of a given compound from first principles, both within and beyond the Franck–Condon approximation. The formalism required to compute fluorescence, Internal Conversion (IC), and Inter-System Crossing (ISC) is discussed. The IC mechanism, in particular, is a difficult pathway to compute due to difficulties associated with the computation of required bosonic configurations and non-adiabatic coupling elements. Here, we offer a discussion and breakdown on how to model these pathways at the Density Functional Theory (DFT) level with respect to its computational implementation, strengths, and current limitations. The model is then used to compute the photoluminescent quantum yield (PLQY) of a number of small but important compounds: anthracene, tetracene, pentacene, diketo-pyrrolo-pyrrole (DPP), and Perylene Diimide (PDI) within a polarizable continuum model. Rate constants for fluorescence, IC, and ISC compare well for the most part with respect to experiment, despite triplet energies being overestimated to a degree. The resulting PLQYs are promising with respect to the level of theory being DFT. While we obtained a positive result for PDI within the Franck–Condon limit, the other systems require a second order correction. Recomputing quantum yields with Herzberg–Teller terms yields PLQYs of 0.19, 0.08, 0.04, 0.70, and 0.99 for anthracene, tetracene, pentacene, DPP, and PDI, respectively. Based on these results, we are confident that the presented methodology is sound with respect to the level of quantum chemistry and presents an important stepping stone in the search for a tool to predict the properties of larger coupled systems.

1.
I.
Lyskov
,
M.
Etinski
,
C. M.
Marian
, and
S. P.
Russo
, “
Exciton energy transfer in organic light emitting diodes with thermally activated delayed fluorescence dopants
,”
J. Mater. Chem. C
6
,
6860
6868
(
2018
).
2.
E.
Mouedden
, “
Lifetime and efficiency improvement of organic luminescent solar concentrators for photovoltaic applications
,” M.Sc. thesis,
Edith Cowan University
,
2016
.
3.
V.
Lemaur
,
M.
Steel
,
D.
Beljonne
,
J.-L.
Brédas
, and
J.
Cornil
, “
Photoinduced charge generation and recombination dynamics in model donor/acceptor pairs for organic solar cell applications: A full quantum-chemical treatment
,”
J. Am. Chem. Soc.
127
,
6077
6086
(
2005
).
4.
J. L.
Banal
,
B.
Zhang
,
D. J.
Jones
,
K. P.
Ghiggino
, and
W. W. H.
Wong
, “
Emissive molecular aggregates and energy migration in luminescent solar concentrators
,”
Acc. Chem. Res.
50
,
49
57
(
2016
).
5.
B.
Zhang
,
H.
Soleimaninejad
,
D. J.
Jones
,
J. M.
White
,
K. P.
Ghiggino
,
T. A.
Smith
, and
W. W. H.
Wong
, “
Highly fluorescent molecularly insulated perylene diimides: Effect of concentration on photophysical properties
,”
Chem. Mater.
29
,
8395
8403
(
2017
).
6.
B.
Zhang
,
I.
Lyskov
,
L. J.
Wilson
,
R. P.
Sabatini
,
A.
Manian
,
H.
Soleimaninejad
,
J. M.
White
,
T. A.
Smith
,
G.
Lakhwani
,
D. J.
Jones
,
K. P.
Ghiggino
,
S. P.
Russo
, and
W. W. H.
Wong
, “
FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation
,”
J. Mater. Chem. C
8
,
8953
8961
(
2020
).
7.
N.
Meftahi
,
A.
Manian
,
A. J.
Christofferson
,
I.
Lyskov
, and
S. P.
Russo
, “
A computational exploration of aggregation-induced excitonic quenching mechanisms for perylene diimide chromophores
,”
J. Chem. Phys.
153
,
064108
(
2020
).
8.
J. B.
Birks
, “
Fluorescence quantum yield measurements
,”
J. Res. Natl. Bur. Stand., Sect. A
80A
,
389
(
1976
).
9.
Y. F.
Pedash
,
O. V.
Prezhdo
,
S. I.
Kotelevskiy
, and
V. V.
Prezhdo
, “
Spin–orbit coupling and luminescence characteristics of conjugated organic molecules. I. Polyacenes
,”
J. Mol. Struct.
585
,
49
59
(
2002
).
10.
J.
Franck
and
E. G.
Dymond
, “
Elementary processes of photochemical reactions
,”
Trans. Faraday Soc.
21
,
536
(
1926
).
11.
E.
Condon
, “
A theory of intensity distribution in band systems
,”
Phys. Rev.
28
,
1182
1201
(
1926
).
12.
E. U.
Condon
, “
Nuclear motions associated with electron transitions in diatomic molecules
,”
Phys. Rev.
32
,
858
872
(
1928
).
13.
G.
Herzberg
and
E.
Teller
, “
Schwingungsstruktur der elektonenu-bergange bei mehratomigen molekulen
,”
Z. Phys. Chem.
21B
,
410
446
(
1933
).
14.
N.
Nijegorodov
,
V.
Ramachandran
, and
D. P.
Winkoun
, “
The dependence of the absorption and fluorescence parameters, the intersystem crossing and internal conversion rate constants on the number of rings in polyacene molecules
,”
Spectrochim. Acta, Part A
53
,
1813
1824
(
1997
).
15.
J.
Tatchen
,
N.
Gilka
, and
C. M.
Marian
, “
Intersystem crossing driven by vibronic spin–orbit coupling: A case study on psoralen
,”
Phys. Chem. Chem. Phys.
9
,
5209
(
2007
).
16.
Z. E. X.
Dance
,
S. M.
Mickley
,
T. M.
Wilson
,
A. B.
Ricks
,
A. M.
Scott
,
M. A.
Ratner
, and
M. R.
Wasielewski
, “
Intersystem crossing mediated by photoinduced intramolecular charge transfer: Julolidine-anthracene molecules with perpendicular π systems
,”
J. Phys. Chem. A
112
,
4194
4201
(
2008
).
17.
M.
Etinski
,
J.
Tatchen
, and
C. M.
Marian
, “
Time-dependent approaches for the calculation of intersystem crossing rates
,”
J. Chem. Phys.
134
,
154105
(
2011
).
18.
J.
Tatchen
and
C. M.
Marian
, “
Vibronic absorption, fluorescence, and phosphorescence spectra of psoralen: A quantum chemical investigation
,”
Phys. Chem. Chem. Phys.
8
,
2133
(
2006
).
19.
Y.
Bai
,
J.
Rawson
,
S. A.
Roget
,
J.-H.
Olivier
,
J.
Lin
,
P.
Zhang
,
D. N.
Beratan
, and
M. J.
Therien
, “
Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation
,”
Chem. Sci.
8
,
5889
5901
(
2017
).
20.
T. J. A.
Wolf
,
R. H.
Myhre
,
J. P.
Cryan
,
S.
Coriani
,
R. J.
Squibb
,
A.
Battistoni
,
N.
Berrah
,
C.
Bostedt
,
P.
Bucksbaum
,
G.
Coslovich
,
R.
Feifel
,
K. J.
Gaffney
,
J.
Grilj
,
T. J.
Martinez
,
S.
Miyabe
,
S. P.
Moeller
,
M.
Mucke
,
A.
Natan
,
R.
Obaid
,
T.
Osipov
,
O.
Plekan
,
S.
Wang
,
H.
Koch
, and
M.
Gühr
, “
Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption
,”
Nat. Commun.
8
,
29
(
2017
).
21.
K. L.
Litvinenko
,
N. M.
Webber
, and
S. R.
Meech
, “
Internal conversion in the chromophore of the green fluorescent protein: Temperature dependence and isoviscosity analysis
,”
J. Phys. Chem. A
107
,
2616
2623
(
2003
).
22.
L. G.
Samsonova
,
N. I.
Selivanov
,
T. N.
Kopylova
,
V. Y.
Artyukhov
,
G. V.
Maier
,
V. G.
Plotnikov
,
V. A.
Sazhnikov
,
A. A.
Khlebunov
, and
M. V.
Alfimov
, “
Experimental and theoretical investigation of the spectral and luminescent properties of some acridine compounds
,”
High Energy Chem.
43
,
105
115
(
2009
).
23.
M.
Bracker
,
C. M.
Marian
, and
M.
Kleinschmidt
, “
Internal conversion of singlet and triplet states employing numerical DFT/MRCI derivative couplings: Implementation, tests, and application to xanthone
,”
J. Chem. Phys.
155
,
014102
(
2021
).
24.
V. G.
Plotnikov
and
B. A.
Dolgikh
, “
Processes of internal conversion in aromatic impurity molecules
,”
Opt. Spectrosc.
43
,
522
527
(
1977
).
25.
V. G.
Plotnikov
and
G. G.
Konoplex
,
Fiz. Tverd. tela (Leningrad)
15
,
680
(
1973
)
V. G.
Plotnikov
and
G. G.
Konoplex
,
, [
Sov. Phys. Solid State
15
,
480
(
1973
)]; Preprint Inst. Tekh., Fix. Akad. Nauk. Ukr. SSR 74-55R, Kiev (1974).
26.
V. G.
Plotnikov
, “
Regularities of the processes of radiationless conversion in polyatomic molecules
,”
Int. J. Quantum Chem.
16
,
527
541
(
1979
).
27.
G. V.
Maier
,
V. Y.
Artyukhov
, and
N. R.
Rib
, “
Nature of the electron-excited states and the mechanism of nonradiative energy transfer in aromatic bifluorophores
,”
Russ. Phys. J.
36
,
949
954
(
1993
).
28.
R. R.
Valiev
,
V. N.
Cherepanov
,
G. V.
Baryshnikov
, and
D.
Sundholm
, “
First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions
,”
Phys. Chem. Chem. Phys.
20
,
6121
6133
(
2018
).
29.
G. V.
Baryshnikov
,
R. R.
Valiev
,
V. N.
Cherepanov
,
N. N.
Karaush-Karmazin
,
V. A.
Minaeva
,
B. F.
Minaev
, and
H.
Ågren
, “
Aromaticity and photophysics of tetrasila- and tetragerma-annelated tetrathienylenes as new representatives of the hetero[8]circulene family
,”
Phys. Chem. Chem. Phys.
21
,
9246
9254
(
2019
).
30.
R. R.
Valiev
,
R. T.
Nasibullin
,
V. N.
Cherepanov
,
G. V.
Baryshnikov
,
D.
Sundholm
,
H.
Ågren
,
B. F.
Minaev
, and
T.
Kurtén
, “
First-principles calculations of anharmonic and deuteration effects on the photophysical properties of polyacenes and porphyrinoids
,”
Phys. Chem. Chem. Phys.
22
,
22314
22323
(
2020
).
31.
H.
Kellerer
,
U.
Pferschy
, and
D.
Pisinger
, “
Introduction to NP-completeness of knapsack problems
,” in
Knapsack Problems
(
Springer Berlin Heidelberg
,
2004
), pp.
483
493
.
32.
R. A.
Shaw
,
A.
Manian
,
I.
Lyskov
, and
S. P.
Russo
, “
Efficient enumeration of bosonic configurations with applications to the calculation of non-radiative rates
,”
J. Chem. Phys.
154
,
084102
(
2021
).
33.
S.
Banerjee
,
A.
Baiardi
,
J.
Bloino
, and
V.
Barone
, “
Temperature dependence of radiative and nonradiative rates from time-dependent correlation function methods
,”
J. Chem. Theory Comput.
12
,
774
786
(
2016
).
34.
M. K.
Kretov
,
A. V.
Scherbinin
, and
N. F.
Stepanov
, “
Simulating the structureless emission bands of Mn2+ ions in ZnCO3 and CaCO3 matrices by means of quantum chemistry
,”
Russ. J. Phys. Chem. A
87
,
245
251
(
2013
).
35.
P. V.
Yurenev
,
M. K.
Kretov
,
A. V.
Scherbinin
, and
N. F.
Stepanov
, “
Environmental broadening of the CTTS bands: The hexaammineruthenium(II) complex in aqueous solution
,”
J. Phys. Chem. A
114
,
12804
12812
(
2010
).
36.
M.
Kleinschmidt
,
J.
Tatchen
, and
C. M.
Marian
, “
SPOCK.CI: A multireference spin-orbit configuration interaction method for large molecules
,”
J. Chem. Phys.
124
,
124101
(
2006
).
37.
M.
Kleinschmidt
,
J.
Tatchen
, and
C. M.
Marian
, “
Spin-orbit coupling of DFT/MRCI wavefunctions: Method, test calculations, and application to thiophene
,”
J. Comput. Chem.
23
,
824
833
(
2002
).
38.
D.
Biermann
and
W.
Schmidt
, “
Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 1. Acenes and benzologs
,”
J. Am. Chem. Soc.
102
,
3163
3173
(
1980
).
39.
Y.
Kawashima
,
T.
Hashimoto
,
H.
Nakano
, and
K.
Hirao
, “
Theoretical study of the valence π → π* excited states of polyacenes: Anthracene and naphthacene
,”
Theor. Chem. Acc.
102
,
49
64
(
1999
).
40.
Y. H.
Meyer
,
R.
Astier
, and
J. M.
Leclercq
, “
Triplet-triplet spectroscopy of polyacenes
,”
J. Chem. Phys.
56
,
801
815
(
1972
).
41.
L. E. A.
Suarez
,
M. F. S. J.
Menger
, and
S.
Faraji
, “
Singlet fission in tetracene: An excited state analysis
,”
Mol. Phys.
118
,
e1769870
(
2020
).
42.
J.
Burgos
,
M.
Pope
,
C. E.
Swenberg
, and
R. R.
Alfano
, “
Heterofission in pentacene-doped tetracene single crystals
,”
Phys. Status Solidi B
83
,
249
256
(
1977
).
43.
S.
Qu
and
H.
Tian
, “
Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics
,”
Chem. Commun.
48
,
3039
(
2012
).
44.
M. A.
Auwalu
and
S.
Cheng
, “
Diketopyrrolopyrrole fluorescent probes, photophysical and biological applications
,”
Chemosensors
9
,
44
(
2021
).
45.
R. S.
Szabadai
,
J.
Roth-Barton
,
K. P.
Ghiggino
,
J. M.
White
, and
D. J. D.
Wilson
, “
Solvatochromism in diketopyrrolopyrrole derivatives: Experimental and computational studies
,”
Aust. J. Chem.
67
,
1330
(
2014
).
46.
M.
Grzybowski
and
D. T.
Gryko
, “
Diketopyrrolopyrroles: Synthesis, reactivity, and optical properties
,”
Adv. Opt. Mater.
3
,
280
320
(
2015
).
47.
A. B.
Pun
,
L. M.
Campos
, and
D. N.
Congreve
, “
Tunable emission from triplet fusion upconversion in diketopyrrolopyrroles
,”
J. Am. Chem. Soc.
141
,
3777
3781
(
2019
).
48.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
49.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
, “
Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr
,”
J. Chem. Phys.
100
,
5829
5835
(
1994
).
50.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision B.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
51.
S. J.
Bradley
,
M.
Chi
,
J. M.
White
,
C. R.
Hall
,
L.
Goerigk
,
T. A.
Smith
, and
K. P.
Ghiggino
, “
The role of conformational heterogeneity in the excited state dynamics of linked diketopyrrolopyrrole dimers
,”
Phys. Chem. Chem. Phys.
23
,
9357
9364
(
2021
).
52.
W.
Chen
,
Z.
Dai
,
H.
Liu
,
H.
Liu
,
Y.
Shi
, and
X.
Li
, “
Photoinduced electron and energy transfer within a pyrene-perylenediimide dyad embedded in polymer matrixes
,”
J. Lumin.
168
,
192
198
(
2015
).
53.
I.
Lyskov
,
M.
Kleinschmidt
, and
C. M.
Marian
, “
Redesign of the DFT/MRCI Hamiltonian
,”
J. Chem. Phys.
144
,
034104
(
2016
).
54.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
55.
University of Karlsruhe
, “
TURBOMOLE V7.3 2018: A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE GmbH, since 2007
,”
1989–2007
.
56.
A.
Schäfer
,
A.
Klamt
,
D.
Sattel
,
J. C. W.
Lohrenz
, and
F.
Eckert
, “
COSMO implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems
,”
Phys. Chem. Chem. Phys.
2
,
2187
2193
(
2000
).
57.
M.
Kleinschmidt
and
C. M.
Marian
, “
Efficient generation of matrix elements for one-electron spin–orbit operators
,”
Chem. Phys.
311
,
71
79
(
2005
).
58.
F.
Plasser
,
S.
Gómez
,
M. F. S. J.
Menger
,
S.
Mai
, and
L.
González
, “
Highly efficient surface hopping dynamics using a linear vibronic coupling model
,”
Phys. Chem. Chem. Phys.
21
,
57
69
(
2019
).
59.
H. B.
Klevens
and
J. R.
Platt
, “
Spectral resemblances of cata-condensed hydrocarbons
,”
J. Chem. Phys.
17
,
470
481
(
1949
).
60.
S.
Sambursky
and
G.
Wolfsohn
, “
On the fluorescence and absorption spectra of anthracene and phenanthrene in solutions
,”
Trans. Faraday Soc.
35
,
427
(
1940
).
61.
I. B.
Berlman
,
Handbook of Fluorescence Spectra of Aromatic Molecules
(
Elsevier
,
1971
).
62.
J.
Ferguson
,
L. W.
Reeves
, and
W. G.
Schneider
, “
Vapor absorption spectra and oscillator strengths of naphthalene, anthracene, and pyrene
,”
Can. J. Chem.
35
,
1117
1136
(
1957
).
63.
M. K.
Orloff
, “
Theoretical study of triplet—triplet absorption spectra. I. Alternant hydrocarbon molecules
,”
J. Chem. Phys.
47
,
235
241
(
1967
).
64.
M.
Baba
,
M.
Saitoh
,
K.
Taguma
,
K.
Shinohara
,
K.
Yoshida
,
Y.
Semba
,
S.
Kasahara
,
N.
Nakayama
,
H.
Goto
,
T.
Ishimoto
, and
U.
Nagashima
, “
Structure and excited-state dynamics of anthracene: Ultrahigh-resolution spectroscopy and theoretical calculation
,”
J. Chem. Phys.
130
,
134315
(
2009
).
65.
R.
Rüger
,
T.
Niehaus
,
E.
van Lenthe
,
T.
Heine
, and
L.
Visscher
, “
Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding
,”
J. Chem. Phys.
145
,
184102
(
2016
).
66.
R. P.
Steiner
and
J.
Michl
, “
Magnetic circular dichroism of cyclic π-electron systems. 11. Derivatives and aza analogues of anthracene
,”
J. Am. Chem. Soc.
100
,
6861
6867
(
1978
).
67.
S.
Murov
,
Handbook of Photochemistry
(
M. Dekker
,
New York
,
1993
).
68.
G. N.
Lewis
and
M.
Kasha
, “
Phosphorescence and the triplet state
,”
J. Am. Chem. Soc.
66
,
2100
2116
(
1944
).
69.
R.
Pariser
, “
Theory of the electronic spectra and structure of the polyacenes and of alternant hydrocarbons
,”
J. Chem. Phys.
24
,
250
268
(
1956
).
70.
J. J.
Burdett
,
A. M.
Müller
,
D.
Gosztola
, and
C. J.
Bardeen
, “
Excited state dynamics in solid and monomeric tetracene: The roles of superradiance and exciton fission
,”
J. Chem. Phys.
133
,
144506
(
2010
).
71.
C. M.
Marian
and
N.
Gilka
, “
Performance of the density functional theory/multireference configuration interaction method on electronic excitation of extended π-systems
,”
J. Chem. Theory Comput.
4
,
1501
1515
(
2008
).
72.
P. M.
Zimmerman
,
F.
Bell
,
D.
Casanova
, and
M.
Head-Gordon
, “
Mechanism for singlet fission in pentacene and tetracene: From single exciton to two triplets
,”
J. Am. Chem. Soc.
133
,
19944
19952
(
2011
).
73.
Y.
Tomkiewicz
,
R. P.
Groff
, and
P.
Avakian
, “
Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals
,”
J. Chem. Phys.
54
,
4504
4507
(
1971
).
74.
A.
Amirav
,
U.
Even
, and
J.
Jortner
, “
Excited-state energetics and dynamics of pentacene-rare gas complexes
,”
J. Phys. Chem.
85
,
309
312
(
1981
).
75.
E.
Heinecke
,
D.
Hartmann
,
R.
Müller
, and
A.
Hese
, “
Laser spectroscopy of free pentacene molecules (I): The rotational structure of the vibrationless S1 ← S0 transition
,”
J. Chem. Phys.
109
,
906
911
(
1998
).
76.
M.
Banasiewicz
,
I.
Deperasińska
, and
B.
Kozankiewicz
, “
Spectroscopic characteristics of pentacene in Shpol’skii matrixes
,”
J. Phys. Chem. A
107
,
662
667
(
2003
).
77.
P. M.
Zimmerman
,
Z.
Zhang
, and
C. B.
Musgrave
, “
Singlet fission in pentacene through multi-exciton quantum states
,”
Nat. Chem.
2
,
648
652
(
2010
).
78.
P. B.
Coto
,
S.
Sharifzadeh
,
J. B.
Neaton
, and
M.
Thoss
, “
Low-lying electronic excited states of pentacene oligomers: A comparative electronic structure study in the context of singlet fission
,”
J. Chem. Theory Comput.
11
,
147
156
(
2014
).
79.
T.
Baruah
,
A.
Garnica
,
M.
Paggen
,
L.
Basurto
, and
R. R.
Zope
, “
Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT
,”
J. Chem. Phys.
144
,
144304
(
2016
).
80.
P. E.
Hartnett
,
E. A.
Margulies
,
C. M.
Mauck
,
S. A.
Miller
,
Y.
Wu
,
Y.-L.
Wu
,
T. J.
Marks
, and
M. R.
Wasielewski
, “
Effects of crystal morphology on singlet exciton fission in diketopyrrolopyrrole thin films
,”
J. Phys. Chem. B
120
,
1357
1366
(
2016
).
81.
F.
Zhang
,
Y.
Ma
,
Y.
Chi
,
H.
Yu
,
Y.
Li
,
T.
Jiang
,
X.
Wei
, and
J.
Shi
, “
Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position
,”
Sci. Rep.
8
,
8208
(
2018
).
82.
G.
Hinze
,
R.
Métivier
,
F.
Nolde
,
K.
Müllen
, and
T.
Basché
, “
Intramolecular electronic excitation energy transfer in donor/acceptor dyads studied by time and frequency resolved single molecule spectroscopy
,”
J. Chem. Phys.
128
,
124516
(
2008
).
83.
L.
Yang
and
S. J.
Jang
, “
Theoretical investigation of non-förster exciton transfer mechanisms in perylene diimide donor, phenylene bridge, and terrylene diimide acceptor systems
,”
J. Chem. Phys.
153
,
144305
(
2020
).
84.
S. V. K.
Isukapalli
,
R. S.
Lekshmi
,
P. K.
Samanta
, and
S. R.
Vennapusa
, “
Formation of excited triplet states in naphthalene diimide and perylene diimide derivatives: A detailed theoretical study
,”
J. Chem. Phys.
153
,
124301
(
2020
).
85.
Y.
Kurashige
and
T.
Yanai
, “
Theoretical study of the π → π* excited states of oligoacenes: A full π-valence DMRG-CASPT2 study
,”
Bull. Chem. Soc. Jpn.
87
,
1071
1073
(
2014
).
86.
M.
Kaur
and
D. H.
Choi
, “
Diketopyrrolopyrrole: Brilliant red pigment dye-based fluorescent probes and their applications
,”
Chem. Soc. Rev.
44
,
58
77
(
2015
).
87.
C.-x.
Ye
,
J.-m.
Zhang
,
X.-d.
Lin
,
T.
Zhang
,
B.
Wang
, and
T.-c.
He
, “
Multiphoton absorption of three chiral diketopyrrolopyrrole derivatives in near-infrared window I and II
,”
Opt. Mater. Express
7
,
3529
(
2017
).
88.
Y. Y.
Pan
,
J.
Huang
,
Z. M.
Wang
,
D. W.
Yu
,
B.
Yang
, and
Y. G.
Ma
, “
Computational investigation on the large energy gap between the triplet excited-states in acenes
,”
RSC Adv.
7
,
26697
26703
(
2017
).
89.
J. M.
Dixon
,
M.
Taniguchi
, and
J. S.
Lindsey
, “
PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations
,”
Photochem. Photobiol.
81
,
212
213
(
2005
).
90.
M.
Kirkus
,
L.
Wang
,
S.
Mothy
,
D.
Beljonne
,
J.
Cornil
,
R. A. J.
Janssen
, and
S. C. J.
Meskers
, “
Optical properties of oligothiophene substituted diketopyrrolopyrrole derivatives in the solid phase: Joint J- and H-type aggregation
,”
J. Phys. Chem. A
116
,
7927
7936
(
2012
).
91.
T.
Xiong
,
R.
Włodarczyk
, and
P.
Saalfrank
, “
Vibrationally resolved absorption and fluorescence spectra of perylene and N-substituted derivatives from autocorrelation function approaches
,”
Chem. Phys.
515
,
728
736
(
2018
).
92.
S. I.
Yang
,
S.
Prathapan
,
M. A.
Miller
,
J.
Seth
,
D. F.
Bocian
,
J. S.
Lindsey
, and
D.
Holten
, “
Synthesis and excited-state photodynamics in perylene-porphyrin dyads 2. Effects of porphyrin metalation state on the energy-transfer, charge-transfer, and deactivation channels
,”
J. Phys. Chem. B
105
,
8249
8258
(
2001
).
93.
W. E.
Ford
and
P. V.
Kamat
, “
Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 3. Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative
,”
J. Phys. Chem.
91
,
6373
6380
(
1987
).
94.
A. W.
Kohn
,
Z.
Lin
, and
T. V.
Voorhis
, “
Toward prediction of nonradiative decay pathways in organic compounds I: The case of naphthalene quantum yields
,”
J. Phys. Chem. C
123
,
15394
15402
(
2019
).
95.
C. A.
Parker
and
T. A.
Joyce
, “
Determination of triplet formation efficiencies by the measurement of sensitized delayed fluorescence
,”
Trans. Faraday Soc.
62
,
2785
(
1966
).

Supplementary Material

You do not currently have access to this content.